GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (14)
  • 1
    Publication Date: 2023-07-21
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉A seismic swarm affected the 53.3°–54.3° Latitude North section of the Mid‐Atlantic Ridge from 26 September to 10 December 2022. We rely on regional, teleseismic and array data to relocate 61 hypocenters and derive 77 moment tensors. The 2022 swarm released a cumulative moment equivalent to Mw 6.3. Seismicity was shallow (7 ± 3 km depth). Most earthquakes are located along the ridge axis with typical, NS oriented normal faulting mechanisms, but a few among the largest and latest earthquakes have unusual thrust mechanisms and locations as far as ∼25 km from the ridge. We attribute the swarm to a shallow magmatic intrusion, with a vertical dike first propagating ∼60 km along axis, accompanied by shallow normal faulting, and then thickening and triggering thrust earthquakes off the ridge, in response to compressive stress buildup. The unrest provides a rare example of an energetic, magmatic driven swarm episode at the mid‐ocean ridge.〈/p〉
    Description: Plain Language Summary: The largest plate boundary systems on Earth are Mid‐ocean ridges (MOR), where the plates continuously drift apart and new lithosphere is constantly being formed. Although the process is well understood, we rarely detect spreading events at MOR, mainly because these regions are remote and local monitoring is rarely possible. In September–November 2022 a large, unusual seismic swarm occurred along a spreading center ridge segment of the North Mid‐Atlantic Ridge. Despite the remoteness of the region, we managed to model regional and teleseismic data to perform earthquake relocation, depth estimation and moment tensor inversion. In this way, we could reconstruct the geometry and the evolution of the seismicity. We found that in the early days of the swarm, seismicity migrated unilaterally over ∼60 km along the ridge axis, from North to South, triggering normal faulting earthquakes, which are typical at MOR. Later, large thrust mechanisms, anomalous in an extensional environment, appeared and quickly became predominant. We explain seismological observations by a magmatic intrusion, which first propagated southward, producing shallow normal faulting earthquakes above the vertical magma dike, and later thickened, increasing compressional stresses on its sides, and triggering large thrust earthquakes.〈/p〉
    Description: Key Points: Analysis of a short, intense seismic swarm at the Mid‐Atlantic Ridge. Identification of unusual, thrust focal mechanisms in an extensional environment. Swarm triggered by dike intrusion at the mid‐ocean ridge.
    Description: German BMBF project EWRICA
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: https://doi.org/10.5281/zenodo.8089070
    Keywords: ddc:551.22 ; seismic swarm ; Mid‐Atlantic Ridge ; seismicity ; magma dyke
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-27
    Description: On 12 August 2021, a 〉220 s lasting complex earthquake with M〈sub〉w〈/sub〉 〉 8.2 hit the South Sandwich Trench. Due to its remote location and short interevent times, reported earthquake parameters varied significantly between different international agencies. We studied the complex rupture by combining different seismic source characterization techniques sensitive to different frequency ranges based on teleseismic broadband recordings from 0.001 to 2 Hz, including point and finite fault inversions and the back‐projection of high‐frequency signals. We also determined moment tensor solutions for 88 aftershocks. The rupture initiated simultaneously with a rupture equivalent to a M〈sub〉w〈/sub〉 7.6 thrust earthquake in the deep part of the seismogenic zone in the central subduction interface and a shallow megathrust rupture, which propagated unilaterally to the south with a very slow rupture velocity of 1.2 km/s and varying strike following the curvature of the trench. The slow rupture covered nearly two‐thirds of the entire subduction zone length, and with M〈sub〉w〈/sub〉 8.2 released the bulk of the total moment of the whole earthquake. Tsunami modeling indicates the inferred shallow rupture can explain the tsunami records. The southern segment of the shallow rupture overlaps with another activation of the deeper part of the megathrust equivalent to M〈sub〉w〈/sub〉 7.6. The aftershock distribution confirms the extent and curvature of the rupture. Some mechanisms are consistent with the mainshocks, but many indicate also activation of secondary faults. Rupture velocities and radiated frequencies varied strongly between different stages of the rupture, which might explain the variability of published source parameters.
    Description: Plain Language Summary: The earthquake of 12 August 2021 along the deep‐sea trench of the South Sandwich Islands in the South Atlantic reached a magnitude of 8.2 and triggered a tsunami. The automatic earthquake parameter determination of different agencies showed very different results shortly after the earthquake and partially underestimated the tsunami potential of the earthquake. A possible reason was the complex rupture process and that the tsunami was generated by a long and shallow slow slip rupture sandwiched between more conventional fast slip subevents at its northern and southern ends. In addition, the fault surface, which extended over 450 km, was highly curved striking 150°–220°. We investigated the different components of the seismic wavefields in different frequency ranges and with different methods. The analysis shows how even complex earthquakes can be deciphered by combining analyzing methods. The comparison with aftershocks and the triggered tsunami waves confirms our model that explains the South Sandwich rupture by four subevents in the plate boundary along the curved deep‐sea trench. Here, the depth, rupture velocities, and slip on each segment of the rupture vary considerably. The method can also be applied to other megathrust earthquakes and help to further improve tsunami warnings in the future.
    Description: Key Points: A combination of multiple approaches, inversion setups, and frequency ranges deciphered the complex earthquake of 2021 South Sandwich. The rupture consisted of four subevents with the largest occurring as a shallow slow rupture parallel to the South Sandwich Trench. Forward modeling proves that the large, shallow thrust subevent caused the recorded tsunami.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Agencia Nacional de Investigación y Desarrollo http://dx.doi.org/10.13039/501100020884
    Description: https://ds.iris.edu/wilbert3/find_event
    Description: https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics
    Description: http://www.ioc-sealevelmonitoring.org/
    Description: https://doi.org/10.7289/V5C8276M
    Description: https://www.gfz-potsdam.de/en/software/tsunami-wave-propagations-easywave
    Keywords: ddc:551.22 ; 2021 South Sandwich Earthquake ; seismic characteristics ; tsunamigenic characteristics
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-12
    Description: On 12 August 2021, a 〉220 s lasting complex earthquake with Mw 〉 8.2 hit the South Sandwich Trench. Due to its remote location and short interevent times, reported earthquake parameters varied significantly between different international agencies. We studied the complex rupture by combining different seismic source characterization techniques sensitive to different frequency ranges based on teleseismic broadband recordings from 0.001 to 2 Hz, including point and finite fault inversions and the back-projection of high-frequency signals. We also determined moment tensor solutions for 88 aftershocks. The rupture initiated simultaneously with a rupture equivalent to a Mw 7.6 thrust earthquake in the deep part of the seismogenic zone in the central subduction interface and a shallow megathrust rupture, which propagated unilaterally to the south with a very slow rupture velocity of 1.2 km/s and varying strike following the curvature of the trench. The slow rupture covered nearly two-thirds of the entire subduction zone length, and with Mw 8.2 released the bulk of the total moment of the whole earthquake. Tsunami modeling indicates the inferred shallow rupture can explain the tsunami records. The southern segment of the shallow rupture overlaps with another activation of the deeper part of the megathrust equivalent to Mw 7.6. The aftershock distribution confirms the extent and curvature of the rupture. Some mechanisms are consistent with the mainshocks, but many indicate also activation of secondary faults. Rupture velocities and radiated frequencies varied strongly between different stages of the rupture, which might explain the variability of published source parameters.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-25
    Description: On February 6, 2023, southeastern Turkey was hit by two of the most devastating earthquakes in the instrumental period of the country, with Mw 7.7-7.8 and Mw 7.6, respectively. Both earthquakes caused massive damage and in total tens of thousands of casualties in Turkey and Syria. In this study, we analyze the rupture processes of main- and aftershocks by combining different seismic source characterization techniques using teleseismic, regional and local data. We perform finite source inversion and back projection-based analyses for the two main shocks and invert for probabilistic centroid moment tensor solutions of both main and aftershocks (M≥4). The first earthquake was bilateral and ruptured a seismic gap along the East Anatolian Fault Zone, with rupture first propagating to the north-east for ~200 km, and in a latter phase propagating to the SSW, probably coming to a halt only on a branch extending into the Mediterranean Sea. The total length of the rupture likely exceeds 500 km. The second event ruptured the EW oriented Sürgü-Misis Fault Zone to the NW of the first event. It shows a highly concentrated rupture near the epicenter, Rupture directivity analyses for M≥5.3 earthquakes provide additional insights into dynamic source aspects. Preliminary moment tensor solutions of numerous aftershocks indicate a remarkable variability of rupturing mechanisms, suggesting stress changes and the activation of multiple faults in the vicinity of the main ruptures. With our work, we aim to shed light onto multiple aspects of the complex rupture evolution and hope to provide new insights towards a better understanding of the devastating 2023 Türkiye earthquake sequence
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-06-26
    Description: On February 6, 2023, southeastern Turkey was hit by two of the most devastating earthquakes in the instrumental period of the country, with Mw 7.8 and Mw 7.5, respectively. Both earthquakes caused massive damage in Turkey and Syria. In this study, we analyze the rupture processes of main- and aftershocks by combining different seismic source characterization techniques using teleseismic, regional, and local data. We perform finite source inversion and back projection-based analyses for the two main shocks and invert for probabilistic centroid moment tensor solutions of both main and aftershocks (M≥4). The first earthquake was bilateral and ruptured a seismic gap along the East Anatolian Fault, with rupture first propagating to the north-east for ~200 km, and in a latter phase propagating to the SSW, probably coming to a halt only on a branch extending into the Mediterranean Sea. The total length of the rupture likely exceeds 500 km. The second event ruptured the EW-oriented Sürgü-Misis Fault to the NW of the first event. It shows a highly concentrated rupture near the epicenter, Rupture directivity analyses for M≥5.3 earthquakes provide additional insights into dynamic source aspects. Preliminary moment tensor solutions of numerous aftershocks indicate a remarkable variability of rupturing mechanisms, suggesting stress changes and the activation of multiple faults in the vicinity of the main ruptures. With our work, we aim to shed light onto multiple aspects of the complex rupture evolution and hope to provide new insights towards a better understanding of the devastating 2023 Türkiye earthquake sequence.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-08-07
    Description: A large seismic swarm affected the North Mid-Atlantic ridge between September and November 2022, with an outstanding seismicity rate and a cumulative moment equivalent to a magnitude Mw 6.3. We performed a detailed seismological analysis using regional, teleseismic and array data to reconstruct the spatiotemporal evolution of the seismicity. Combining template matching, relative location and full moment tensor inversion, we identify that most seismicity was located in a narrow band along the ridge, with typical normal faulting mechanisms. However, some of the latest and strongest events occurred up tp 25 km off the ridge axis, with thrust mechanisms that are atypical at mid-ocean ridges and inconsistent with the extensional tectonics. Seismicity also present a clear migration pattern, propagating over ~60 km from North to South, with the thrust mechanisms only occurring in the late phase of the swarm and only in the central-southern section. We hypothesize a magmatic intrusion as driver of the seismicity, with a vertical dyke first propagating southward, accompanied by normal faulting earthquakes, and then thickening, to produce a stress perturbation able to trigger thrust earthquakes on pre-existing structures on the side of the dike. The 2022 unrest provides evidence for sporadic spreading accompanied by large swarm episodes driven by magma intrusions at the mid-ocean ridge.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-09-04
    Description: In the context of early emergency response to moderate and large earthquake shaking, we present a simulation based low-frequency ground motion estimation workflow that expedites an existing simulation method while taking into account simplified source process information. We focus on using source information that can be expected to be available shortly after an impacting earthquake, for example moment-tensor and simple finite-fault parameters. We utilize physics-based simulations which can include effects based on source orientation or finite faults, like rupture directivity. In order to keep the computational effort within feasible bounds and to apply the approach on global scale, we restrict ourselves to a low-frequency setup (standard 1-D layered earth model and 2 Hz sampling frequency) for either a moment tensor or a simple kinematic finite fault model. From the simulated records we then extract ground motion parameters of interest for arbitrary locations within the area of expected impact and display the expected spatial patterns of ground motion. Although simulations are kept simple, the results from this low-frequency ground motion parameter simulation (e.g. for peak-ground displacement) are in good agreement with observations from two well-studied earthquakes and partially more accurate than traditional, more empirical approaches (standard deviation 〈0.3 log10 units). However, waveform calculation and subsequent ground motion parameter extraction is computationally expensive. For a significant computational speedup in the context of rapid ground motion assessment, we directly train neural network (NN) models from large sets of source model information and their corresponding spatial ground motion distribution. We show that the trained NNs are able to reproduce the earthquake source related effects, like directivity and focal mechanism patterns, of the ground motion in any case. Given a set of source parameters, we obtain prediction errors smaller than 0.05 log10 units (ca. 11 per cent) and a magnitude dependent increase in computational speed of more than 1000 times compared to the initial waveform modelling. The proposed procedure enables thus to immediately compute probabilistic ground motion maps related to uncertainties in source parameters estimates, for example by sampling distributions based on parameter uncertainties or directly from an existing ensemble of focal parameter solutions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-12-11
    Description: The characterization of a seismic source is crucial to understand seismogenic processes. Simplified source models, e.g., a moment tensor, may not be suited for certain physical processes, such as landslides or complex earthquake ruptures. We propose here a double source model to reproduce landslide processes, with two opposite oriented forces representing the detachment and impact of a sliding mass. A double source model is also suited to characterize complex earthquake ruptures, as it allows modeling the failure of two patches along a single or on two different faults. The inversion for a double source is implemented in a Bayesian bootstrap-based probabilistic inversion scheme with uncertainty estimation for all parameters. In the case of landslides, the source is described by two independent single forces and earthquakes are described by two dependent double-couples. The double single-force model includes 16 free parameters and the double double-couple model includes 18. Here we show the results obtained in the analysis of three different landslides (Val Bondasca-Switzerland 2017, Anak Krakatoa-Indonesia 2018 and Uttarakhand-India 2021) and two complex earthquake ruptures (Alaska 2018, South Sandwich islands 2021). Our findings show that our approach can resolve the landslide geometry and slope orientation. For the case of earthquakes, we were able to resolve the focal mechanism along two faults, which were active during the Alaska 2018 earthquake, as well as the time delay and orientation of the South Sandwich doublet in 2021.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-11
    Description: High-precision real-time GNSS have recently expanded to monitoring and early detection of natural hazards. German research project EWRICA (Early-Warning and Rapid ImpaCt Assessment with real-time GNSS in the Mediterranean) funded by the national Ministry for Education and Research aims for the prototype implementation of the GNSS-augmented seismic source inversion and rapid impact assessment in the seismically active regions of Mediterranean. The project runs in close cooperation with partners operating high-rate GNSS networks RING (Italy) and NOANET (Greece). An overarching goal is to compute robust local ground motion models shortly after an earthquake to assess areas of strong shaking as well as secondary effects such as tsunamis and landslides. The four work packages - (1) real-time processing of coseismic displacements (RT-multi GNSS with regional augmentation, streamed in miniSEED format via SeedLink server, optionally joint processing with collocated accelerometers); (2) fast source inversion (Bayesian moment-tensor solution with Pyrocko tools); (3) rapid impact assessment (neural network predictions of ground motion maps with uncertainties, also coupled to probabilistic tsunami forecasting PTF at INGV); and (4) system prototype -- end up with an operational system prototype to demonstrate the full operational processing chain by hindcasting selected historical (e.g., 2016 M6.2 Norcia; 2020 M7 Samos) and synthetic event scenarios. EWRICA may serve as a blueprint for other regions of the world: currently EWRICA's tools are being tested for application in Indonesia, together with the colleagues from the Geospatial Agency (BIG) and from the national tsunami warning center InaTEWS.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-04
    Description: The Early-Warning and Rapid Impact Assessment with real-time GNSS in the Mediterranean (EWRICA) is a federal Ministry of Education and Research funded project (funding period: 2020-2023) that aims to develop fast kinematic and point source inversion and modeling tools combining GNSS-based near field data with traditional broadband ground velocity and accelerometer data. Fast and robust estimates of seismic source parameters are essential for reliable hazard estimates, e.g. in the frame of tsunami early warning. Hence, EWRICA aims for the development and testing of new real time seismic source inversion techniques based on local surface displacements. The resulting methods shall be applied for tsunami early warning purposes in the Mediterranean area. In this framework, this repository is a suite of four packages that can be used and combined in different ways and are ewricacore, ewricasiria, ewricagm and ewricawebapp. These four packages can be deployed in a docker container (see instructions below) to demonstrate a possible output of Early-Warning and Rapid Impact Assessment. In the Docker, a probabilistic earthquake source inversion report (ewricasiria) and a Neural network based Shake map (ewricagm) are generated for two past earthquakes whose data (event and waveform) is continuously served by GEOFON servers at regualr intervals to produce and test a real case scenario. The whole workflow is managed by ewricacore, a central unit of work that first fetches the waveform data via the seedlink protocol and event data via event bus or FDSN web service, then collects and cuts waveforms segments according to a custom configuration, and eventually triggers custom processing (ewricasiria and ewricagm in the docker, but any processing can be implemented) whenever configurable conditions are met. The final package, ewricawebapp is a web-based graphical user interface that can be opened in your local browser or deployed on your web server in order to visualize and check all output produced by the docker workflow in form of HTML pges, images and data in various formats (e.g., JSON, log text files).
    Type: info:eu-repo/semantics/other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...