GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
Document type
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: Ocean tide loading (OTL) and ocean tide dynamics (OTD) are known to be affected by Earth's internal structures, with the latter being affected by the self-attraction and loading (SAL) potential. Combining the 3D earth models Lyon and LITHO1.0, we construct a hybrid model to quantify the coupled effect of sediments, oceanic and continental lithosphere, and anelastic upper mantle on OTL and OTD. Compared to PREM, this more realistic 3D model produces significantly larger vertical OTL displacement by up to 3.9, 2.6, and 0.1 mm for the M2, K1, and Mf OTL, respectively. Moreover, it shows a smaller vector difference of 0.1 mm and a smaller amplitude difference of 0.2 mm than PREM with OTL observations at 663 Global Navigation Satellite System stations, a confirmation of the cumulative effect due to these earth features. On the other hand, we find a resonant impact of wider extent and larger magnitude on OTD, especially for the M2 and K1 tides. Specifically, this impact is concentrated in the ranges 0–6 mm and 0–1.5 mm for M2 and K1, respectively, which is considerably larger than the impact on SAL (mostly in the ranges 0–2 mm and 0–1.0 mm, respectively). Since the effect on vertical displacement is at a similar level compared to the accuracy of modern data-constrained ocean tide models that require correction of the geocentric tide by loading induced vertical displacements, we regard its consideration to be potentially beneficial in OTD modeling. Key Points The effects of 3D sediments, lithosphere, upper mantle (anelastic) on ocean tide loading and ocean tide dynamics have been studied here The inclusion of these 3D earth features leads to an improvement of predicted vertical M2 displacements as confirmed with Global Navigation Satellite System observations The potential impact of changes in displacement on tidal systems is amplified, especially for semidiurnal tides (e.g., 6 mm for M2)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...