GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
Document type
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    AMER GEOPHYSICAL UNION
    In:  EPIC3Journal of Advances in Modeling Earth Systems, AMER GEOPHYSICAL UNION, 13(5), pp. e2020MS002438-e2020MS002438, ISSN: 1942-2466
    Publication Date: 2024-02-13
    Description: Abstract We have equipped the unstructured-mesh global sea-ice and ocean model FESOM2 with a set of physical parameterizations derived from the single-column sea-ice model Icepack. The update has substantially broadened the range of physical processes that can be represented by the model. The new features are directly implemented on the unstructured FESOM2 mesh, and thereby benefit from the flexibility that comes with it in terms of spatial resolution. A subset of the parameter space of three model configurations, with increasing complexity, has been calibrated with an iterative Green's function optimization method to test the impact of the model update on the sea-ice representation. Furthermore, to explore the sensitivity of the results to different atmospheric forcings, each model configuration was calibrated separately for the NCEP-CFSR/CFSv2 and ERA5 forcings. The results suggest that a complex model formulation leads to a better agreement between modeled and the observed sea-ice concentration and snow thickness, while differences are smaller for sea-ice thickness and drift speed. However, the choice of the atmospheric forcing also impacts the agreement of the FESOM2 simulations and observations, with NCEP-CFSR/CFSv2 being particularly beneficial for the simulated sea-ice concentration and ERA5 for sea-ice drift speed. In this respect, our results indicate that parameter calibration can better compensate for differences among atmospheric forcings in a simpler model (i.e., sea-ice has no heat capacity) than in more realistic formulations with a prognostic sea-ice thickness distribution and sea ice enthalpy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...