GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (47)
Document type
Keywords
Language
Years
Year
  • 1
    Publication Date: 2023-07-19
    Description: Limited constraints on the variability of the deep‐water production in the Labrador Sea complicate reconstructions of the strength of the Atlantic Meridional Overturning Circulation (AMOC) during the Late Quaternary. Large volumes of detrital carbonates were repeatedly deposited in the Labrador Sea during the last 32 kyr, potentially affecting radiogenic Nd isotope signatures. To investigate this the Nd isotope compositions of deep and intermediate waters were extracted from the authigenic Fe‐Mn oxyhydroxide fraction, foraminiferal coatings, the residual silicates and leachates of dolostone grains. We provide a first order estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. During the Last Glacial Maximum the Nd isotope signatures in the Labrador Sea would allow active water mass mixing with more radiogenic ɛNd values (−12.6 and −14) prevailing in its eastern part whereas less radiogenic values (ɛNd ∼ −18.4) were found on the western Labrador slope. The deposition of detrital carbonates during Heinrich stadials (2,1) was accompanied by negative detrital and authigenic Nd isotope excursions (ɛNd ∼ −31) that were likely controlled by dissolution of dolostone or dolostone associated mineral inclusions. This highly unradiogenic signal dominated the authigenic phases and individual water masses in the Labrador Sea, serving as potential source of highly unradiogenic Nd to the North Atlantic region, while exported southward. The Holocene authigenic ɛNd signatures of the coatings and leachates significantly differed from those of the detrital silicates, approaching modern bottom water mass signatures during the Late Holocene.
    Description: Plain Language Summary: The Labrador Sea is an important region for deep water formation and for the ocean circulation in the Atlantic region. Over the last 32 thousand years, numerous discharges from melting glaciers added freshwater to the Labrador Sea which could help understand the future effects of current melting glaciers. This information is necessary to better constrain climate predictions in order to gauge the effects on the Global Ocean Water Circulation. However, past deep water production in the Labrador is still poorly constrained, complicating reconstruction of the Atlantic Meridional Overturning Circulation on different timescales. In this study we investigated changes in deep and intermediate water mass circulation patterns over the last 32 kyr based on the radiogenic Nd isotope compositions that serve as a water mass circulation proxy. Analysis of four marine sediment cores show that the deposition of large volumes of detrital carbonates during studied period had a large effect on the recorded in the sediment column signals. New data suggest active water mass circulation during the maximum extent of glacial ice sheets. The modern day ocean circulation patterns have emerged during the Late Holocene (6 ka).
    Description: Key Points: Estimation of Nd release via dissolution of detrital carbonates and its contribution to the authigenic ԑNd signatures in the Labrador Sea. Dissolution of detrital dolostones in the water column during Heinrich stadials at least partially controlled ɛNd signatures. During the LGM generally more radiogenic signatures possibly indicate active water mass advection and mixing in the Labrador Sea.
    Description: GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel http://dx.doi.org/10.13039/501100003153
    Description: Kiel University
    Description: https://doi.org/10.1594/PANGAEA.952659
    Keywords: ddc:551.9 ; Labrador Sea ; Late Quaternary ; Paleoceanography ; neodymium isotopes ; dolostone ; AMOC ; carbonate dissolution ; Heinrich stadials
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-06-20
    Description: Since the initial discovery of the non-exponential mass fractionation (non-EMF) of Nd isotopes analysis in 2002, similar deviations from an EMF pattern have been reported for measurements of a number of isotope systems (e.g., Si, Ge, Sr, Sn, Ba, Yb, W, Os, Hg and Pb) with MC-ICP-MS. However, the previous controversial reports on the magnitude of the deviations from EMF suggest that instrumental mass bias behaviour of MC-ICP-MS is neither fully understood nor well-characterised. Consequently, the standard approach of using a mass dependent fractionation (MDF) correction model (e.g., exponential law) may lead to both inaccurate and imprecise results. In this study, we systematically characterise the instrumental mass fractionation of MC-ICP-MS using Nd isotope measurements carried out under different plasma conditions, quantified using the normalised argon index (NAI) as an estimate of plasma temperature. Our results indicate that the mass bias of MC-ICP-MS is not always a simple exponential function of mass but shows systematic deviations from an EMF behaviour, which are closely associated with decreased NAIs. As a result, the conventional exponential correction yields a 143Nd/144Nd value of 0.512257 for the reference material BHVO-2 when the NAI is low, which is 722 ppm lower than the reported value of 0.512979. By tuning the plasma to higher NAIs (higher plasma temperatures), the deviations from the EMF array are systematically attenuated and the exponential correction is able to correct for the instrumental mass bias under high NAIs. In contrast, a regression correction model for Nd isotopes is developed to account for the observed mass fractionation behaviour that does not follow EMF under low NAIs, given that the regression correction relies on the observed loglinear fractionation of different isotope pairs and does not require both isotope ratios to undergo EMF. We expect that the analytical protocol and fundamental insights gained in this study are applicable to a wide range of other isotope measurements with MC-ICP-MS.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: The Asian summer monsoon affects the lives of billions of people. With the aim of identifying geochemical tracers for the monsoon-related freshwater input from the major rivers draining into the Bay of Bengal (BoB) and the Andaman Sea (AnS), we have analyzed the yttrium and rare earth element (YREE) concentration of surface seawater samples from various locations spanning the Andaman Islands in 2011 to 2013. In some locations, samples have been taken in March, July, and November 2011, thus spanning the seasonal cycle and including different monsoon phases. Generally, the YREE patterns are similar to those reported for offshore samples from the BoB and AnS in January 1997, with seawater-normalized patterns of most samples characterized by middle REE enrichments. An enhancement of these middle REE bulges accompanies large increases in dissolved REE concentrations from streams and sediment-rich areas such as mangrove environments. Conversely, some samples, in particular those taken 1–2 days after heavy rainfall in March 2011, show pronounced REE scavenging accompanied by the preferential removal of dissolved light REEs (LREEs) and by higher Y/Ho ratios. The Nd isotope signature of the remaining dissolved REE phase of these low YREE samples is more radiogenic than local rocks and sediments. The time series at a location away from local input sources show remarkably similar REE patterns and concentrations in March and July. Then in October–November, following the peak in monsoon-induced river discharge, the dissolved REE concentrations increase by almost a factor of two, whereas Nd isotopes become less radiogenic by 1.5 εNd units. These unradiogenic values are found at the same site in the winter dry season of the following year, demonstrating the decoupling of sea surface salinity (SSS) and Nd. The large sub-annual variability of YREE concentrations and Nd isotopes encountered was likely caused by the conversion of YREE from the dissolved (probably colloidal) pool to the labile particulate fraction. The comparison of unfiltered and filtered sample concentrations reveals the existence of a large labile particulate pool in the BoB and AnS that most likely originates from the massive river sediment fluxes and is instrumental in the seasonal changes observed.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Key Points Calibration of XRF core scanning data highlights the need for careful examination of sediment properties such as porosity/water Grain size and water content in the sediment trigger systematic artifacts in the signal intensity of light elements (e.g. Si and Al) Known terrigenous flux proxies (e.g Ti/Ca, Fe/Ca) are influenced by sea level variations X‐ray fluorescence (XRF) core scanning of marine and lake sediments has been extensively used to study changes in past environmental and climatic processes over a range of timescales. The interpretation of XRF‐derived element ratios in paleoclimatic and paleoceanographic studies primarily considers differences in the relative abundances of particular elements. Here we present new XRF core scanning data from two long sediment cores in the Andaman Sea in the northern Indian Ocean and show that sea level related processes influence terrigenous inputs based proxies such as Ti/Ca, Fe/Ca, and elemental concentrations of the transition metals (e.g. Mn). Zr/Rb ratios are mainly a function of changes in median grain size of lithogenic particles and often covary with changes in Ca concentrations that reflect changes in biogenic calcium carbonate production. This suggests that a common process (i.e. sea level) influences both records. The interpretation of lighter element data (e.g. Si and Al) based on low XRF counts is complicated as variations in mean grain size and water content result in systematic artifacts and signal intensities not related to the Al or Si content of the sediments. This highlights the need for calibration of XRF core scanning data based on discrete sample analyses and careful examination of sediment properties such as porosity/water content for reliably disentangling environmental signals from other physical properties. In the case of the Andaman Sea, reliable extraction of a monsoon signal will require accounting for the sea level influence on the XRF data.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-08-19
    Description: N2 fixation in low-latitude surface waters dominates the input of fixed nitrogen (N) to the global ocean, sustaining ocean fertility. In the Caribbean Sea, higher foraminifera-bound (FB-)delta 15N indicates a decline in N2 fixation during ice ages, but its cause and broader implications are unclear. Here, we report three additional Atlantic FB-delta 15N records, from the subtropical North and South Atlantic gyres (MSM58-50 and DSDP Site 516) and the equatorial Atlantic (ODP Site 662). Similar glacial and interglacial delta 15N in the equatorial Atlantic suggests a stable delta 15N for the nitrate below the gyre thermoclines. The North Atlantic record shows a FB-delta 15N rise during the ice ages, resembling a previously published FB-delta 15N record from the South China Sea. The commonality among the FB-delta 15N records is that they resemble sea level-driven variation in regional shelf area, with high FB-delta 15N (inferred reduction in N2 fixation) during periods of low shelf area. The South China Sea shows the largest delta 15N signal, the subtropical North Atlantic shows less, and the South Atlantic shows the least, the same ordering as the ice age reductions in continental shelf area in the different regions. Reduced shelf sedimentary denitrification would have increased the nitrogen-to-phosphorus ratio of the nutrient supply to open ocean surface waters, leading to decreased N2 fixation and thus higher gyre thermocline nitrate delta 15N, explaining the higher FB-delta 15N of peak ice ages. These observations identify shelf sediment denitrification as an important regional driver of modern N2 fixation and imply strong basin-scale coupling of fixed nitrogen losses and inputs. Nitrogen fixation plays the crucial role in the ocean of supplying bioavailable nitrogen (N), a major nutrient for phytoplankton growth. Variations in nitrogen fixation over time can, therefore, significantly impact ocean productivity and, consequently, carbon sequestration in the ocean interior. To infer past changes in nitrogen fixation during ice ages, we measured the nitrogen isotope (15N-to-14N) ratio of organic matter preserved within the carbonate skeleton of planktic foraminifera. Our study reveals a substantial reduction in nitrogen fixation during ice ages in the low-nutrient regions of the North Atlantic, with only minor variations in the South Atlantic. The basin-dependent changes are attributed to sea level-driven reductions in regional continental shelf area during ice ages, resulting in diminished sedimentary denitrification and subsequently lower phosphorus excess in the surface waters downstream of the continental shelves. Overall, our study highlights the importance of regional factors, like shelf sediment denitrification, in influencing oceanic nitrogen fixation within a given ocean basin. Furthermore, it suggests that changes in nitrogen fixation cannot explain the decline in atmospheric carbon dioxide concentration during ice ages. Reduction of nitrogen fixation in the Atlantic Ocean during ice ages, proportional to sea-level variations in regional shelf area Regional coupling between nitrogen fixation and shelf sedimentary denitrification in the subtropical gyres Change in nitrogen fixation cannot explain the lowering of atmospheric CO2 during ice ages
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-07-22
    Description: Coral skeletal B/Ca (effectively B/CO32–), in combination with boron isotopic composition (δ11B), has been used to reconstruct the dissolved inorganic carbon chemistry of coral calcification media and to explore the biomineralisation process and its response to ocean acidification. This approach assumes that B(OH)4−, the B species incorporated into aragonite, competes with dissolved inorganic carbon species for inclusion in the mineral lattice. In this study we precipitated aragonite from seawater in vitro under conditions that simulate the compositions of the calcification media used to build tropical coral skeletons. To deconvolve the effects of pH and [CO32–] on boron incorporation we conducted multiple experiments at constant [CO32–] but variable pH and at constant pH but variable [CO32–], both in the absence and presence of common coral skeletal amino acids. Large changes in solution [CO32–], from 〈 400 to 〉1000 µmol kg−1, or in precipitation rate, have no significant effect on aragonite B/Ca at pHtotal of 8.20 and 8.41. A significant inverse relationship is observed between solution [CO32–] and aragonite B/Ca at pHtotal = 8.59. Aragonite B/Ca is positively correlated with seawater pH across precipitations conducted at multiple pH but this relationship is driven by the effect of pH on the abundance of B(OH)4– in seawater. Glutamic acid and glycine enhance the incorporation of B in aragonite but aspartic acid has no measurable effect. Normalising aragonite B/Ca to solution [B(OH)4–] creates KDB(OH)4− which do not vary significantly between pH treatments. This implies that B(OH)4– and CO32– do not compete with each other for inclusion in the aragonite lattice at pHtotal 8.20 and 8.41. Only at high pH (8.59), when [B(OH)4–] is high, do we observe evidence to suggest that the 2 anions compete to be incorporated into the lattice. These high pH conditions represent the uppermost limits reliably measured in the calcification media of tropical corals cultured under present day conditions, suggesting that skeletal B/Ca may not reflect the calcification media dissolved inorganic carbon chemistry in all modern day corals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-07-23
    Description: The correlation between concentrations of dissolved barium (dBa) and silicon (dSi) in the modern ocean supports the use of Ba as a paleoceanographic proxy. However, the mechanisms behind their linkage and the exact processes controlling oceanic Ba cycling remain enigmatic. To discern the extent to which this association arises from biogeochemical processes versus physical mixing, we examine the behavior of Ba and Si at the Congo River-dominated Southeast Atlantic margin where active biological processes and large boundary inputs override the large-scale ocean circulation. Here we present the first combined measurements of dissolved stable Ba (δ138Ba) and Si (δ30Si) isotopes as well as Ba and Si fluxes estimated based on 228Ra from the Congo River mouth to the northern Angola Basin. In the surface waters, river-borne particle desorption or dissolution and shelf inputs lead to non-conservative additions of both dBa and dSi to the Congo-shelf-zone, with the Ba flux increasing more strongly than that of Si across the shelf. In the epipelagic and mesopelagic layers, Ba and Si are decoupled likely due to different depths of in situ barite precipitation and biogenic silica production. In the deep waters of the northern Angola Basin, we observe large enrichment of dBa, likely originating from high benthic inputs from the Congo deep-sea fan sediments. Our results reveal different mechanisms controlling the biogeochemical cycling of Ba and Si and highlight a strong margin influence on marine Ba cycling. Their close association across the global ocean must therefore mainly be a consequence of the large-scale ocean circulation. Key Points Stronger enrichment of dissolved barium (dBa) than silicon (dSi) observed in the shelf-zone of the Congo plume Diatom silica production has negligible effect on dissolved Ba isotopic compositions in large river plumes Strong dBa enrichment (up to 24 nM) in the deep water of the northern Angola Basin likely originates from high benthic inputs
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Boron isotopes in marine carbonates are increasingly used to reconstruct seawater pH and atmospheric pCO2 through Earth’s history. While isotope ratio measurements from individual laboratories are often of high quality, it is important that records generated in different laboratories can equally be compared. Within this Boron Isotope Intercomparison Project (BIIP), we characterised the boron isotopic composition (commonly expressed in δ11B) of two marine carbonates: Geological Survey of Japan carbonate reference materials JCp‐1 (coral Porites) and JCt‐1 (giant clam Tridacna gigas). Our study has three foci: (i) to assess the extent to which oxidative pre‐treatment, aimed at removing organic material from carbonate, can influence the resulting δ11B; (ii) to determine to what degree the chosen analytical approach may affect the resultant δ11B, and (iii) to provide well‐constrained consensus δ11B values for JCp‐1 and JCt‐1. The resultant robust mean and associated robust standard deviation (s*) for un‐oxidised JCp‐1 is 24.36 ± 0.45‰ (2s*), compared with 24.25 ± 0.22‰ (2s*) for the same oxidised material. For un‐oxidised JCt‐1, respective compositions are 16.39 ± 0.60‰ (2s*; un‐oxidised) and 16.24 ± 0.38‰ (2s*; oxidised). The consistency between laboratories is generally better if carbonate powders were oxidatively cleaned prior to purification and measurement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The development of the South Asian monsoon (SAM) and Himalaya‐Tibetan Plateau uplift were closely intertwined with some studies suggesting that uplift initiated the monsoon whereas others link tectonics with monsoon‐controlled exhumation. Silicate weathering controls atmospheric CO2 on geological timescales resulting in a large potential for monsoon strength and the Himalayan orogeny to influence global climate but detailed records of SAM‐induced weathering on million year (Myr) timescales are lacking. Here, we present radiogenic Sr, Nd, and Pb isotope compositions of clay minerals produced by silicate weathering and transported to the central Bay of Bengal. The radiogenic isotope data exhibit a relatively small range and demonstrate a remarkably consistent mixture of sources dominated by Himalayan rocks and the Indo‐Burman ranges, which consist of sediments derived from the Himalayas. This suggests that the spatial pattern of regional weathering, which today is highest in the regions of strongest monsoon rains, has persisted in a similar form for the last 27 Myrs. A pronounced increase in primary clay mineral abundance (from 9% to 22%) coincident with global cooling 13.9 Myrs ago points to a shift in the weathering regime given that the clay provenance did not change dramatically. Relatively weaker chemical weathering intensity during the mid and late Miocene cooling suggests increased aridity and changes in the large scale atmospheric circulation in the SAM domain. The establishment of the dry winter monsoon season during the mid and late Miocene may have caused this shift in the weathering regime and can reconcile much of the contrasting evidence for SAM initiation.
    Type: Article , PeerReviewed
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: The neodymium isotope composition (ɛNd) of authigenic phases in marine sediment is widely used to reconstruct the origin and mixing of water masses of overlying seawater through time. However, at some locations in the modern ocean, the ɛNd of authigenic phases in surface sediment is not consistent with that of local seawater, raising concerns about its current interpretation as a paleotracer of water masses. To further investigate this question, we conducted a laboratory-based incubation experiment with a Mn-oxide phase placed at the sediment–water interface of multicores to assess the extent to which the authigenic phase records seawater ɛNd. Multicores were collected from the Strait of Georgia (SoG), which is a relatively deep coastal waterway with high sedimentation rates, oxygenated surface sediments, and active macrofauna, separating the mainland coast of British Columbia and Vancouver Island. Manganese oxide-coated XAD resin beads were placed at the sediment surface and the cores were incubated for 6 months in a tank filled with SoG seawater spiked with Nd. While the ɛNd of the Mn-oxide coated resin (−4.0) was similar to that of SoG seawater used for the incubation (−3.7), the Nd/Nd of the Mn-oxide phase measured after the incubation indicates that, under our experimental conditions, a minimum of 83% of the Nd associated with the Mn-oxide phase is not sourced from seawater, but from pore water. The Nd/Nd ratio of the Mn-oxide resin is necessary to determine the predominant source of Nd to the resin because the ɛNd of SoG pore water (−3.9) is within analytical error of seawater (−3.7). Using field data and constraints from the Nd mass balance during the incubation, we conclude that the similarity of ɛNd in pore water and seawater in the SoG is fortuitous and not a result of a top-down or bottom-up control. Although the setting of our sediments is not directly comparable to open ocean locations, this study raises concerns about the use of ɛNd in paleocirculation studies, and points to the necessity of elucidating the factors controlling local lithogenic dissolution in pore waters as a prerequisite for the correct interpretation of ɛNd in the authigenic phases of marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...