GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (12)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2024-05-07
    Description: Ice-rich permafrost in the circum-Arctic and sub-Arctic, such as late Pleistocene Yedoma, are especially prone to degradation due to climate change or human activity. When Yedoma deposits thaw, large amounts of frozen organic matter and biogeochemically relevant elements return into current biogeochemical cycles. Building on previous mapping efforts, the objective of this paper is to compile the first digital pan-Arctic Yedoma map and spatial database of Yedoma coverage. Therefore, we 1) synthesized, analyzed, and digitized geological and stratigraphical maps allowing identification of Yedoma occurrence at all available scales, and 2) compiled field data and expert knowledge for creating Yedoma map confidence classes. We used GIS-techniques to vectorize maps and harmonize site information based on expert knowledge. Hence, here we synthesize data on the circum-Arctic and sub-Arctic distribution and thickness of Yedoma for compiling a preliminary circum-polar Yedoma map. To harmonize the different datasets and to avoid merging artifacts, we applied map edge cleaning while merging data from different database layers. For the digitalization and spatial integration, we used Adobe Photoshop CS6 (Version: 13.0 x64), Adobe Illustrator CS6 (Version 16.0.3 x64), Avenza MAPublisher 9.5.4 (Illustrator Plug-In) and ESRI ArcGIS 10.6.1 for Desktop (Advanced License). Generally, we followed workflow of figure 2 of the related publication (IRYP Version 2, Strauss et al 2021, https://doi.org/10.3389/feart.2021.758360). We included a range of attributes for Yedoma areas based on lithological and stratigraphic information from the source maps and assigned three different confidence levels of the presence of Yedoma (confirmed, likely, or uncertain). Using a spatial buffer of 20 km around mapped Yedoma occurrences, we derived an extent of the Yedoma domain. Our result is a vector-based map of the current pan-Arctic Yedoma domain that covers approximately 2,587,000 km², whereas Yedoma deposits are found within 480,000 km² of this region. We estimate that 35% of the total Yedoma area today is located in the tundra zone, and 65% in the taiga zone. With this Yedoma mapping, we outlined the substantial spatial extent of late Pleistocene Yedoma deposits and created a unique pan-Arctic dataset including confidence estimates.
    Keywords: Alaska North Slope; Aldan River outcrop Mamontova Gora; Allaikha_Yedoma; Arctic Ocean; Area/locality; AWI_Perma; Ayon; base of ice complex; Batagai_2014; Batagai_Kunitsky_2010; Batagay, Yakutia; Beaver_Creek; Belkovsky; Binary Object; BLOSSOM; Blossom Cape; Bolshoy_Lyakhovsky_Island_1999; Bolshoy Lyakhovsky Island, NE Siberia; Buor_Khaya_2010; Buor Khaya; Bykovsky_Peninsula; Cape_Anisii_Kotelnii_Island_2002; Cape_Maly_Chukochy; Cape Mamontov Klyk, Laptev Sea; Central_Yakutia; Central Yakutia; Chukotka, Russia; climate feedbacks; Coast_of_the_East-Siberian_Sea; Col-3_Colville_River_2009; Col-5_Colville_River_2009a; Col-5_Colville_River_2009b; Comment; CRREL; DATE/TIME; Dresvyanyi_Island; Duvanny_Yar; Duvanny_Yar_2008; Duvanny_Yar_2009; Duvannyi_Yar; Duvanny Yar, Yakutia; East Siberian Sea; Elgene_Kyuele_2010a; Elgene_Kyuele_2010b; Event label; File format; File name; File type; Geological profile sampling; GEOPRO; Great_Khomus_River; Greenhouse gas source; Identification; Investigator; IPA_Yedoma_Action_Group; Itkillik_River; Itkillik_River_2012a; Itkillik_River_2012b; Itkillik River Outcrop, Alaskan North Slope; Khaptashin_Yar; Khardang; Kitluk_River_Seward_Peninsula_2010; Klondike_area; Kolyma Lowland, NE Siberia; Konstantinovskoye; Kotelnii Island, NE Siberia; Kurugnakh_2002; Kurugnakh_2008; Kurungnakh; Kurungnakh_Island_Lena-Delta_2005; Kurungnakh Island, Lena Delta, Siberia; Kychchyma; KYT; Kytalyk; Kytalyk, Indigirka lowlands, Siberia; Lake El'gene Kyuele, central Siberian Plateau; Late Pleistocene; LATITUDE; Lena-Amga_Rivers; Lena-Anabar Lowland, NE Siberia; Lena Delta, NE Siberia; Lena Delta, Siberia, Russia; Lesser_Chaun_Strait; LONGITUDE; Maly_Lyakhovsky_Island; Mamontov_Klyk_2011; Mamontova_Gora_2001; Mamontovy_Gora_Aldan_River_2001; Mamontovy_Khayata; Mamontovy_Klyk_2003; Molotlovskiy_Kamen; MULT; Multiple investigations; Muostakh_2012; Muostakh Island, Laptev Sea; Mys_Chukochi_2009a; Mys_Chukochi_2009b; N_Yakutia; Nagym; Nagym_Lena; Northern_Bykovsky_Peninsula_2014; Northern_Seward_Peninsula; NW Chukotka; Old_Allaikha; Oyagoss_Yar_2002; Palisades; Permafrost; Permafrost Research; PETA-CARB; Plakhino; Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool; Rauchua_river_bank_2011; Rauhua_River; Russkoe; Sakha Republic, Russia; Seward Peninsula, Alaska; Sobo_Sise_2014; Sobo_Sise_Lena-Delta_2014; Sobo-Sise_Cliff; Sobo Sise Island, Lena Delta; SSC; Stolboboy_Island_2002; Stolbovoy Island, NE Siberia; Syrdakh_1976; Syrdakh, Central Yakutia; Tabaga_2013a; Tabaga_2013b; Tabaga, Central Yakutia; Tanda; thermokarst; The Yedoma Region: A Synthesis of Circum-Arctic Distribution and Thickness; Tube_Dispenser_Lake_Cherskii_2007; Tyungyulyu_alas; Ust_Rauchua_coast_2014; Uste-Omolon_Yar; Vankina_River_mouth; Vault_Creek_Tunnel; Vilyui_River; Yana-Indigirka Lowland, NE Siberia; Yedoma; Yedoma_IRYP
    Type: Dataset
    Format: text/tab-separated-values, 1124 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-07
    Description: This file presents the detailed description of two deep permafrost cores from the Yukechi Alas landscape in Central Yakutia, Russia. These data were recorded during subsampling of the cores and are based on visual and haptic impression. The core "Alas1" represents an adjacent alas deposit. Core was obtained during field work in March 2015.
    Keywords: Alas; AWI_Envi; AWI_Perma; AWI Arctic Land Expedition; Carbon; Central_Yakutia_Yukechi_2015; Central Yakutia; Color description; DEPTH, sediment/rock; Depth, top/min; Dry alas center; Ground ice, contact to bottom unit; Ground ice, cryostructure; Observation; Organic matter; Permafrost; Permafrost Research; PETA-CARB; Polar Terrestrial Environmental Systems @ AWI; Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool; RCDT; RU-Land_2015_CentralYakutia_Yuke; Section; Sediment contact to bottom unit; Sediment type; State of permafrost; Truck mounted rotary drill; Uniform resource locator/link to image; Yedoma; YUK15-Alas1; Yukechi
    Type: Dataset
    Format: text/tab-separated-values, 595 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-07
    Description: This file presents the detailed description of two deep permafrost cores from the Yukechi Alas landscape in Central Yakutia, Russia. These data were recorded during subsampling of the cores and are based on visual and haptic impression. The core "YED1" is a Yedoma permafrost core. Core was obtained during field work in March 2015.
    Keywords: Alas; AWI_Envi; AWI_Perma; AWI Arctic Land Expedition; Carbon; Central_Yakutia_Yukechi_2015; Central Yakutia; Color description; DEPTH, sediment/rock; Depth, top/min; Ground ice, contact to bottom unit; Ground ice, cryostructure; Observation; Organic matter; Permafrost; Permafrost Research; PETA-CARB; Polar Terrestrial Environmental Systems @ AWI; Rapid Permafrost Thaw in a Warming Arctic and Impacts on the Soil Organic Carbon Pool; RCDT; RU-Land_2015_CentralYakutia_Yuke; Section; Sediment contact to bottom unit; Sediment type; State of permafrost; Truck mounted rotary drill; Uniform resource locator/link to image; Yedoma; Yedoma dry; YUK15-YED1; Yukechi
    Type: Dataset
    Format: text/tab-separated-values, 1050 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-04-14
    Description: One quarter of the Northern hemisphere is underlain by permanently frozen ground, referred to as permafrost. Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decomposes into carbon dioxide and methane, further enhancing the greenhouse effect. Part of this organic matter also consists of revived cellular microbes (prokaryotes, unicellular eukaryotes) as well as viruses that have remained dormant since prehistorical times. While the literature abounds on descriptions of the rich and diverse prokaryotic microbiomes found in permafrost, no additional report about “live” viruses have been published since the two original studies describing pithovirus (in 2014) and mollivirus (in 2015). This wrongly suggests that such occurrences are rare and that “zombie viruses” are not a public health threat. To restore an appreciation closer to reality, we report the preliminary characterizations of 13 new viruses isolated from seven different ancient Siberian permafrost samples, one from the Lena river and one from Kamchatka cryosol. As expected from the host specificity imposed by our protocol, these viruses belong to five different clades infecting Acanthamoeba spp. but not previously revived from permafrost: Pandoravirus, Cedratvirus, Megavirus, and Pacmanvirus, in addition to a new Pithovirus strain.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-30
    Description: In the context of global warming, the melting of arctic permafrost raises the threat of a re-emergence of microorganisms some of which were shown to remain viable in ancient frozen soils for up to half a million years. In order to evaluate this risk, it is of interest to acquire a better knowledge of the composition of the microbial communities found in this understudied environment. Here we present a metagenomics analysis of 12 soil samples from Russian Arctic and subarctic pristine areas: Chukotka, Yakutia, and Kamchatka, including 9 permafrost samples collected at various depths. These large datasets (9.2 1011 total bp) were assembled (525,313 contigs 〉 5kb), their encoded protein contents predicted, then used to perform taxonomical assignments of bacterial, archaeal, and eukaryotic organisms, as well as DNA viruses. The various samples exhibited variable DNA contents and highly diverse taxonomic profiles showing no obvious relationship with their locations, depths or deposit ages. Bacteria represented the largely dominant DNA fraction (95%) in all samples, followed by archaea (3.2%), surprisingly little eukaryotes (0.5%), and viruses (0.4%). Although no common taxonomic pattern was identified, the samples shared unexpected high frequencies of β-lactamase genes, almost 0.9 copy/bacterial genome. In addition of known environmental threats, the particularly intense warming of the Arctic might thus enhance the spread of bacterial antibiotic resistances, today's major challenge in public health. β-lactamases were also observed at high frequency in other types of soils, suggesting their general role in the regulation of bacterial populations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-31
    Description: Ice-rich permafrost in the circum-Arctic and sub-Arctic (hereafter pan-Arctic), such as late Pleistocene Yedoma, are especially prone to degradation due to climate change or human activity. When Yedoma deposits thaw, large amounts of frozen organic matter and biogeochemically relevant elements return into current biogeochemical cycles. This mobilization of elements has local and global implications: increased thaw in thermokarst or thermal erosion settings enhances greenhouse gas fluxes from permafrost regions. In addition, this ice-rich ground is of special concern for infrastructure stability as the terrain surface settles along with thawing. Finally, understanding the distribution of the Yedoma domain area provides a window into the Pleistocene past and allows reconstruction of Ice Age environmental conditions and past mammoth-steppe landscapes. Therefore, a detailed assessment of the current pan-Arctic Yedoma coverage is of importance to estimate its potential contribution to permafrost-climate feedbacks, assess infrastructure vulnerabilities, and understand past environmental and permafrost dynamics. Building on previous mapping efforts, the objective of this paper is to compile the first digital pan-Arctic Yedoma map and spatial database of Yedoma coverage. Therefore, we 1) synthesized, analyzed, and digitized geological and stratigraphical maps allowing identification of Yedoma occurrence at all available scales, and 2) compiled field data and expert knowledge for creating Yedoma map confidence classes. We used GIS-techniques to vectorize maps and harmonize site information based on expert knowledge. We included a range of attributes for Yedoma areas based on lithological and stratigraphic information from the source maps and assigned three different confidence levels of the presence of Yedoma (confirmed, likely, or uncertain). Using a spatial buffer of 20 km around mapped Yedoma occurrences, we derived an extent of the Yedoma domain. Our result is a vector-based map of the current pan-Arctic Yedoma domain that covers approximately 2,587,000 km2, whereas Yedoma deposits are found within 480,000 km2 of this region. We estimate that 35% of the total Yedoma area today is located in the tundra zone, and 65% in the taiga zone. With this Yedoma mapping, we outlined the substantial spatial extent of late Pleistocene Yedoma deposits and created a unique pan-Arctic dataset including confidence estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-31
    Description: We determine Hg concentrations of various deposits in Siberia’s deep permafrost and link sediment properties and Hg enrichment to establish a first Hg inventory of late Pleistocene permafrost down to a depth of 36 m below surface. As Arctic warming is transforming the ice-rich permafrost of Siberia, sediment is released and increases the flux of particulates to the Arctic shelf seas through thawing coasts, lakeshores, and river floodplains. Heavy metals within soils and sediments are also released and may increasingly enter Arctic waters and the biological food chain. High levels of mercury (Hg) have been reported from shallow soils across the Arctic. Rapid thawing is now mobilizing sediment from deeper strata, but so far little is known about Hg concentrations in deep permafrost. Here, forty-one samples from sediment successions at seven sites and of different states of permafrost degradation on Bykovsky Peninsula (northern Yakutian coast) and in the Yukechi Alas region (Central Yakutia) were analyzed for Hg, total carbon, total nitrogen, and total organic carbon as well as grain-size distribution, bulk density, and mass specific magnetic susceptibility. We show average Hg concentrations of 9.72 ± 9.28 μg kg-1 in the deep sediments, an amount comparable to the few previous Arctic studies existing, and a significant correlation of Hg content with total organic carbon, total nitrogen, grain-size distribution, and mass specific magnetic susceptibility. Hg concentrations are higher in the generally sandier sediments of the Bykovsky Peninsula than in the siltier sediments of the Yukechi Alas. The ratio of Hg to total organic carbon in this study is 2.57 g kg-1, including samples with very low carbon content. We conclude that many deep permafrost sediments, some of which have been frozen for millennia, contain elevated concentrations of Hg and the stock of Hg ready to be released by erosion is of significance for the Arctic ecosystem. The Hg mobilized may accumulate on the way to or in the shallow sea, and where it enters into active biogeochemical cycles of aquatic systems it may concentrate in food webs. Our study highlights the need for better understanding Hg stocks and Hg release from permafrost.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-31
    Description: Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ca. 70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkanes concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted one-year-long incubations (4 °C, dark) and measured anaerobic carbon dioxide (CO2) and methane (CH4) production. The sediments from both cores contained little TOC (0.7±0.4 wt%), but DOC values were relatively high, with highest values in the frozen Yedoma lake sediments (1620 mg L-1). Cumulative GHG production after one year was highest in the Yedoma lake sediments (226±212 μg CO2-C gdw-1, 28±36 μg CH4-C gdw-1) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75±76 μg CO2-C gdw-1, 19±29 μg CH4-C gdw-1). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-31
    Description: The Batagay megaslump, a permafrost thaw feature in north-eastern Siberia, provides access to ancient permafrost up to ∼650 kyr old. We aimed to assess the permafrost-locked organic matter (OM) quality and to deduce palaeo-environmental information on glacial–interglacial timescales. We sampled five stratigraphic units exposed on the 55 m high slump headwall and analysed lipid biomarkers (alkanes, fatty acids and alcohols). Our findings revealed similar biogeochemical signatures for the glacial periods: the lower ice complex (Marine Isotope Stage (MIS) 16 or earlier), the lower sand unit (sometime between MIS 16–6) and the upper ice complex (MIS 4–2). The OM in these units has a terrestrial character, and microbial activity was likely limited. Contrarily, the n-alkane and fatty acid distributions differed for the units from interglacial periods: the woody layer (MIS 5), separating the lower sand unit and the upper ice complex, and the Holocene cover (MIS 1), on top of the upper ice complex. The woody layer, marking a permafrost degradation disconformity, contained markers of terrestrial origin (sterols) and high microbial decomposition (iso- and anteiso-fatty acids). In the Holocene cover, biomarkers pointed to wet depositional conditions and we identified branched and cyclic alkanes, which are likely of microbial origin. Higher OM decomposition characterised the interglacial periods. As climate warming will continue permafrost degradation in the Batagay megaslump and in other areas, large amounts of deeply buried ancient OM with variable composition and degradability are mobilised, likely significantly enhancing greenhouse gas emissions from permafrost regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-31
    Description: Ice- and organic-rich deposits of late Pleistocene age, known as Yedoma Ice Complex (IC), are widespread across large permafrost regions in Northeast Siberia. To reconstruct Yedoma IC formation in Central Yakutia, we analyzed the geochemistry, sedimentology, and stratigraphy of thawed and frozen deposits below two thermokarst lakes in different evolutionary stages (a mature alas lake and a initial Yedoma lake) from the Yukechi site in the Lena-Aldan interfluve. We focused on inorganic geochemical characteristics and mineral weathering in two ∼17 m long sediment cores to trace syngenetic permafrost aggradation and degradation over time. Geochemical properties, element ratios, and specific weathering indices reflect varying sedimentation processes and seasonal thaw depths under variable environmental conditions. Deeper thaw during the interstadial Marine Isotope Stage (MIS) 3 enabled increasing mineral weathering and initial thermokarst processes. Sedimentological proxies reflect high transport energy and short transport paths and mainly terrestrial sediment supply. The Yedoma formation resulted from fluvial, alluvial and aeolian processes. Low mean TOC contents in both cores contrast with Yedoma deposits elsewhere. Likely, this is a result of the very low organic matter content of the source material of the Yukechi Yedoma. Pronounced cryostructures and strongly depleted pore water stable isotopes show a perennially frozen state and preserved organic matter for the lower part of the Yedoma lake core, while changing permafrost conditions, conditions promoting weathering, and strong organic matter decomposition are suggested by our proxies for its middle and upper parts. For the alas lake core, less depleted water stable isotopes reflect the influence of recent precipitation, i.e. the infiltration of rain and lake water into the unfrozen ground. The FENG, MIA(R), and ICV weathering indices have proven to be promising proxies for the identification of conditions that promote mineral weathering to different degrees in the stratigraphy of the thawed and frozen Yedoma deposits, for which we assume a rather homogeneous chemical composition of the parent material. Our study highlights that the understanding of environmental conditions during Yedoma formation and degradation processes by specific geochemical proxies is crucial for assessing the potential decomposition and preservation of the frozen and unfrozen Yedoma inventories.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...