GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-09-06
    Description: Rossby Wave Packets (RWPs) are linked to extreme weather events and exert a strong influence on the predictability of weather systems in the midlatitudes. Considering the whole wave packet, in the sense of the packet envelope, RWPs can be viewed as entities that describe variability of the atmosphere beyond the synoptic scale. We here examine the predictability of RWPs as such entities. As a verification metric we used the so-called Displacement and Amplitude Score (DAS) applied to the envelope field of the midlatitude flow. The DAS is based on a field deforming method and, as one of its major advantages, avoids the “double-penalty” verification problem without the need to identify single RWP objects. We assess RWP predictability using NOAA GEFSV12 ensemble reforecasts for RWPs that have been previously tracked in reanalysis data. A prominent result is that RWP predictability depends on the stage of the RWP lifecycle: The propagation stage exhibits higher predictability than the decay or genesis stage. A small seasonal dependence is found, with summer being the least predicable season. No significant dependence is found on geographical (northern hemispheric) location. We will further discuss the link of RWP predictability to MJO activity and phases, and to the occurrence of North Atlantic-European weather regimes as one means to better understand the role of these large-scale, low-frequency phenomena on midlatitude predictability.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-12-13
    Description: IGMAS+ is a software combining 3-D forward and inverse modeling, interactive visualization and interdisciplinary interpretation of potential fields and their applications under geophysical and geological data constrains. The software has a long history starting 1988 and has seen continuous improvement since then with input by many contributors. Since 2019, IGMAS+ is maintained and developed at The Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences by the staff of Section 4.5 – Basin Modelling and Section 5.2 – eScience Centre with strong ongoing support by H.-J. Götze and S. Schmidt from CAU Kiel. The official webpage of IGMAS+ is available at https://www.gfz-potsdam.de/igmas. Each major version of IGMAS+ is assigned with a DOI. Intermediate releases including changelog can be found at https://git.gfz-potsdam.de/igmas/igmas-releases/-/releases/.
    Type: info:eu-repo/semantics/other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...