GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 24, No. 3 ( 2020-03-10), p. 1109-1129
    Abstract: Abstract. Ice-wedge polygons are common Arctic landforms. The future of these landforms in a warming climate depends on the bidirectional feedback between the rate of ice-wedge degradation and changes in hydrological characteristics. This work aims to better understand the relative roles of vertical and horizontal water fluxes in the subsurface of polygonal landscapes, providing new insights and data to test and calibrate hydrological models. Field-scale investigations were conducted at an intensively instrumented location on the Barrow Environmental Observatory (BEO) near Utqiaġvik, AK, USA. Using a conservative tracer, we examined controls of microtopography and the frost table on subsurface flow and transport within a low-centered and a high-centered polygon. Bromide tracer was applied at both polygons in July 2015 and transport was monitored through two thaw seasons. Sampler arrays placed in polygon centers, rims, and troughs were used to monitor tracer concentrations. In both polygons, the tracer first infiltrated vertically until encountering the frost table and was then transported horizontally. Horizontal flow occurred in more locations and at higher velocities in the low-centered polygon than in the high-centered polygon. Preferential flow, influenced by frost table topography, was significant between polygon centers and troughs. Estimates of horizontal hydraulic conductivity were within the range of previous estimates of vertical conductivity, highlighting the importance of horizontal flow in these systems. This work forms a basis for understanding complexity of flow in polygonal landscapes.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2100610-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecological Informatics, Elsevier BV, Vol. 61 ( 2021-03), p. 101232-
    Type of Medium: Online Resource
    ISSN: 1574-9541
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2218079-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Cryosphere, Copernicus GmbH, Vol. 16, No. 5 ( 2022-05-19), p. 1889-1901
    Abstract: Abstract. In Arctic ecosystems, increasing temperatures are driving the expansion of nitrogen (N) fixing shrubs across tundra landscapes. The implications of this expansion to the biogeochemistry of Arctic ecosystems are of critical importance and more work is needed to better understand the form, availability, and transportation potential of N from these shrubs across a variety of Arctic landscapes. To gain insights into the processes controlling N within a permafrost hillslope system, the spatiotemporal variability of nitrate (NO3-) and its environmental controls were investigated at an alder (Alnus viridis spp. fruticosa) dominated permafrost tundra landscape in the Seward Peninsula, Alaska, USA. Soil pore water was collected from locations within alder shrubland growing along a well-drained hillslope and was compared to soil pore water collected from locations outside (upslope, downslope, and between) the alder shrubland. Soil pore water collected within alder shrubland had an average NO3-N (nitrogen from nitrate) concentration of 4.27±8.02 mg L−1 and differed significantly from locations outside alder shrubland (0.23±0.83 mg L−1; p〈0.05). Temporal variation in NO3-N within and downslope of alder shrubland co-occurred with precipitation events where NO3- that accumulated in the soil was likely flushed downslope during rainfall. These findings have important implications for nutrient availability and mobility in N-limited permafrost systems that are experiencing shrub expansion in response to a warming Arctic.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nitrogen, MDPI AG, Vol. 3, No. 2 ( 2022-05-21), p. 314-332
    Abstract: Climate-driven permafrost thaw alters the strongly coupled carbon and nitrogen cycles within the Arctic tundra, influencing the availability of limiting nutrients including nitrate (NO3−). Researchers have identified two primary mechanisms that increase nitrogen and NO3− availability within permafrost soils: (1) the ‘frozen feast’, where previously frozen organic material becomes available as it thaws, and (2) ‘shrubification’, where expansion of nitrogen-fixing shrubs promotes increased soil nitrogen. Through the synthesis of original and previously published observational data, and the application of multiple geospatial approaches, this study investigates and highlights a third mechanism that increases NO3− availability: the hydrogeomorphic evolution of polygonal permafrost landscapes. Permafrost thaw drives changes in microtopography, increasing the drainage of topographic highs, thus increasing oxic conditions that promote NO3− production and accumulation. We extrapolate relationships between NO3− and soil moisture in elevated topographic features within our study area and the broader Alaskan Coastal Plain and investigate potential changes in NO3− availability in response to possible hydrogeomorphic evolution scenarios of permafrost landscapes. These approximations indicate that such changes could increase Arctic tundra NO3− availability by ~250–1000%. Thus, hydrogeomorphic changes that accompany continued permafrost degradation in polygonal permafrost landscapes will substantially increase soil pore water NO3− availability and boost future fertilization and productivity in the Arctic.
    Type of Medium: Online Resource
    ISSN: 2504-3129
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2934684-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Cryosphere, Copernicus GmbH, Vol. 17, No. 9 ( 2023-09-14), p. 3987-4006
    Abstract: Abstract. Soil pore water (SPW) chemistry can vary substantially across multiple scales in Arctic permafrost landscapes. The magnitude of these variations and their relationship to scale are critical considerations for understanding current controls on geochemical cycling and for predicting future changes. These aspects are especially important for Arctic change modeling where accurate representation of sub-grid variability may be necessary to predict watershed-scale behaviors. Our research goal is to characterize intra- and inter-watershed soil water geochemical variations at two contrasting locations in the Seward Peninsula of Alaska, USA. We then attempt to identify the key factors controlling concentrations of important pore water solutes in these systems. The SPW geochemistry of 18 locations spanning two small Arctic catchments was examined for spatial variability and its dominant environmental controls. The primary environmental controls considered were vegetation, soil moisture and/or redox condition, water–soil interactions and hydrologic transport, and mineral solubility. The sampling locations varied in terms of vegetation type and canopy height, presence or absence of near-surface permafrost, soil moisture, and hillslope position. Vegetation was found to have a significant impact on SPW NO3- concentrations, associated with the localized presence of nitrogen-fixing alders and mineralization and nitrification of leaf litter from tall willow shrubs. The elevated NO3- concentrations were, however, frequently equipoised by increased microbial denitrification in regions with sufficient moisture to support it. Vegetation also had an observable impact on soil-moisture-sensitive constituents, but the effect was less significant. The redox conditions in both catchments were generally limited by Fe reduction, seemingly well-buffered by a cache of amorphous Fe hydroxides, with the most reducing conditions found at sampling locations with the highest soil moisture content. Non-redox-sensitive cations were affected by a wide variety of water–soil interactions that affect mineral solubility and transport. Identification of the dominant controls on current SPW hydrogeochemistry allows for qualitative prediction of future geochemical trends in small Arctic catchments that are likely to experience warming and permafrost thaw. As source areas for geochemical fluxes to the broader Arctic hydrologic system, geochemical processes occurring in these environments are particularly important to understand and predict with regards to such environmental changes.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Hydrological Processes, Wiley, Vol. 36, No. 5 ( 2022-05)
    Abstract: Concentration–discharge dynamics were evaluated in a small (~ 2.25 km 2 ) headwater catchment underlain with discontinuous permafrost on the Seward Peninsula of western Alaska. A large storm, during which 48 mm of rain fell over a 24‐h period, enabled the evaluation of solute concentration–discharge response to a sizeable hydrological event, while water stable isotopes enabled an appraisal of the contributions of event water. Under normal catchment conditions, chemostatic behaviour was observed for solutes typically derived from mineral weathering (e.g. calcium, magnesium, sodium and silica). The chemostatic behaviour observed for most solutes under normal catchment conditions indicated that catchment storage and residence times are sufficiently long for many solute generating reactions to approach equilibrium. Following the storm however, most solutes exhibited dilutive and highly variable behaviour. This likely indicated the exceedance of a discharge threshold where chemostatic behaviour could no longer be maintained for most solutes. Dissolved organic carbon and silica were the only solutes monitored to exhibit chemostatic behaviour during all time periods.
    Type of Medium: Online Resource
    ISSN: 0885-6087 , 1099-1085
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1479953-4
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Environmental Pollution, Elsevier BV, Vol. 299 ( 2022-04), p. 118878-
    Type of Medium: Online Resource
    ISSN: 0269-7491
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 280652-6
    detail.hit.zdb_id: 2013037-5
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Environmental Research Letters, IOP Publishing, Vol. 17, No. 4 ( 2022-04-01), p. 045024-
    Abstract: Foundation species have disproportionately large impacts on ecosystem structure and function. As a result, future changes to their distribution may be important determinants of ecosystem carbon (C) cycling in a warmer world. We assessed the role of a foundation tussock sedge ( Eriophorum vaginatum ) as a climatically vulnerable C stock using field data, a machine learning ecological niche model, and an ensemble of terrestrial biosphere models (TBMs). Field data indicated that tussock density has decreased by ∼0.97 tussocks per m 2 over the past ∼38 years on Alaska’s North Slope from ∼1981 to 2019. This declining trend is concerning because tussocks are a large Arctic C stock, which enhances soil organic layer C stocks by 6.9% on average and represents 745 Tg C across our study area. By 2100, we project that changes in tussock density may decrease the tussock C stock by 41% in regions where tussocks are currently abundant (e.g. −0.8 tussocks per m 2 and −85 Tg C on the North Slope) and may increase the tussock C stock by 46% in regions where tussocks are currently scarce (e.g. +0.9 tussocks per m 2 and +81 Tg C on Victoria Island). These climate-induced changes to the tussock C stock were comparable to, but sometimes opposite in sign, to vegetation C stock changes predicted by an ensemble of TBMs. Our results illustrate the important role of tussocks as a foundation species in determining future Arctic C stocks and highlight the need for better representation of this species in TBMs.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Global Change Biology, Wiley, Vol. 27, No. 9 ( 2021-05), p. 1820-1835
    Abstract: Boreal peatland forests have relatively low species diversity and thus impacts of climate change on one or more dominant species could shift ecosystem function. Despite abundant soil water availability, shallowly rooted vascular plants within peatlands may not be able to meet foliar demand for water under drought or heat events that increase vapor pressure deficits while reducing near surface water availability, although concurrent increases in atmospheric CO 2 could buffer resultant hydraulic stress. We assessed plant water relations of co‐occurring shrub (primarily Rhododendron groenlandicum and Chamaedaphne calyculata ) and tree ( Picea mariana and Larix laricina ) species prior to, and in response to whole ecosystem warming (0 to +9°C) and elevated CO 2 using 12.8‐m diameter open‐top enclosures installed within an ombrotrophic bog. Water relations (water potential [Ψ], turgor loss point, foliar and root hydraulic conductivity) were assessed prior to treatment initiation, then Ψ and peak sap flow (trees only) assessed after 1 or 2 years of treatments. Under the higher temperature treatments, L. laricina Ψ exceeded its turgor loss point, increased its peak sap flow, and was not able to recover Ψ overnight. In contrast, P. mariana operated below its turgor loss point and maintained constant Ψ and sap flow across warming treatments. Similarly, C. calyculata Ψ stress increased with temperature while R. groenlandicum Ψ remained at pretreatment levels. The more anisohydric behavior of L. laricina and C. calyculata may provide greater net C uptake with warming, while the more conservative P. mariana and R. groenlandicum maintained greater hydraulic safety. These latter species also responded to elevated CO 2 by reduced Ψ stress, which may also help limit hydraulic failure during periods of extreme drought or heat in the future. Along with Sphagnum moss, the species‐specific responses of peatland vascular communities to drier or hotter conditions will shape boreal peatland composition and function in the future.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Cryosphere, Copernicus GmbH, Vol. 16, No. 8 ( 2022-08-17), p. 3269-3293
    Abstract: Abstract. The spatial distribution of snow plays a vital role in sub-Arctic and Arctic climate, hydrology, and ecology due to its fundamental influence on the water balance, thermal regimes, vegetation, and carbon flux. However, the spatial distribution of snow is not well understood, and therefore, it is not well modeled, which can lead to substantial uncertainties in snow cover representations. To capture key hydro-ecological controls on snow spatial distribution, we carried out intensive field studies over multiple years for two small (2017–2019; ∼ 2.5 km2) sub-Arctic study sites located on the Seward Peninsula of Alaska. Using an intensive suite of field observations (〉 22 000 data points), we developed simple models of the spatial distribution of snow water equivalent (SWE) using factors such as topographic characteristics, vegetation characteristics based on greenness (normalized different vegetation index, NDVI), and a simple metric for approximating winds. The most successful model was random forest, using both study sites and all years, which was able to accurately capture the complexity and variability of snow characteristics across the sites. Approximately 86 % of the SWE distribution could be accounted for, on average, by the random forest model at the study sites. Factors that impacted year-to-year snow distribution included NDVI, elevation, and a metric to represent coarse microtopography (topographic position index, TPI), while slope, wind, and fine microtopography factors were less important. The characterization of the SWE spatial distribution patterns will be used to validate and improve snow distribution modeling in the Department of Energy's Earth system model and for improved understanding of hydrology, topography, and vegetation dynamics in the sub-Arctic and Arctic regions of the globe.
    Type of Medium: Online Resource
    ISSN: 1994-0424
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2393169-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...