GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Neurology Vol. 12 ( 2021-7-23)
    In: Frontiers in Neurology, Frontiers Media SA, Vol. 12 ( 2021-7-23)
    Abstract: Subarachnoid hemorrhage (SAH) is a devastating stroke subtype with a high rate of mortality and morbidity. The poor clinical outcome can be attributed to the biphasic course of the disease: even if the patient survives the initial bleeding emergency, delayed cerebral ischemia (DCI) frequently follows within 2 weeks time and levies additional serious brain injury. Current therapeutic interventions do not specifically target the microvascular dysfunction underlying the ischemic event and as a consequence, provide only modest improvement in clinical outcome. SAH perturbs an extensive number of microvascular processes, including the “automated” control of cerebral perfusion, termed “ cerebral autoregulation .” Recent evidence suggests that disrupted cerebral autoregulation is an important aspect of SAH-induced brain injury. This review presents the key clinical aspects of cerebral autoregulation and its disruption in SAH: it provides a mechanistic overview of cerebral autoregulation, describes current clinical methods for measuring autoregulation in SAH patients and reviews current and emerging therapeutic options for SAH patients. Recent advancements should fuel optimism that microvascular dysfunction and cerebral autoregulation can be rectified in SAH patients.
    Type of Medium: Online Resource
    ISSN: 1664-2295
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2564214-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Informa UK Limited ; 2023
    In:  China Journal of Social Work Vol. 16, No. 1 ( 2023-01-02), p. 43-58
    In: China Journal of Social Work, Informa UK Limited, Vol. 16, No. 1 ( 2023-01-02), p. 43-58
    Type of Medium: Online Resource
    ISSN: 1752-5098 , 1752-5101
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2433400-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2022
    In:  Stroke Vol. 53, No. 1 ( 2022-01), p. 249-259
    In: Stroke, Ovid Technologies (Wolters Kluwer Health), Vol. 53, No. 1 ( 2022-01), p. 249-259
    Abstract: Circadian rhythms influence the extent of brain injury following subarachnoid hemorrhage (SAH), but the mechanism is unknown. We hypothesized that cerebrovascular myogenic reactivity is rhythmic and explains the circadian variation in SAH-induced injury. Methods: SAH was modeled in mice with prechiasmatic blood injection. Inducible, smooth muscle cell–specific Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1) gene deletion (smooth muscle–specific Bmal1 1 knockout [sm-Bmal1 KO]) disrupted circadian rhythms within the cerebral microcirculation. Olfactory cerebral resistance arteries were functionally assessed by pressure myography in vitro; these functional assessments were related to polymerase chain reaction/Western blot data, brain histology (Fluoro-Jade/activated caspase-3), and neurobehavioral assessments (modified Garcia scores). Results: Cerebrovascular myogenic vasoconstriction is rhythmic, with a peak and trough at Zeitgeber times 23 and 11 (ZT23 and ZT11), respectively. Histological and neurobehavioral assessments demonstrate that higher injury levels occur when SAH is induced at ZT23, compared with ZT11. In sm-Bmal1 KO mice, myogenic reactivity is not rhythmic. Interestingly, myogenic tone is higher at ZT11 versus ZT23 in sm-Bmal1 KO mice; accordingly, SAH-induced injury in sm-Bmal1 KO mice is more severe when SAH is induced at ZT11 compared to ZT23. We examined several myogenic signaling components and found that CFTR (cystic fibrosis transmembrane conductance regulator) expression is rhythmic in cerebral arteries. Pharmacologically stabilizing CFTR expression in vivo (3 mg/kg lumacaftor for 2 days) eliminates the rhythmicity in myogenic reactivity and abolishes the circadian variation in SAH-induced neurological injury. Conclusions: Cerebrovascular myogenic reactivity is rhythmic. The level of myogenic tone at the time of SAH ictus is a key factor influencing the extent of injury. Circadian oscillations in cerebrovascular CFTR expression appear to underlie the cerebrovascular myogenic reactivity rhythm.
    Type of Medium: Online Resource
    ISSN: 0039-2499 , 1524-4628
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 1467823-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Journal of NeuroEngineering and Rehabilitation Vol. 20, No. 1 ( 2023-01-24)
    In: Journal of NeuroEngineering and Rehabilitation, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2023-01-24)
    Abstract: Stroke is a significant contributor of worldwide disability and morbidity with substantial economic consequences. Rehabilitation is a vital component of stroke recovery, but inpatient stroke rehabilitation programs can struggle to meet the recommended hours of therapy per day outlined by the Canadian Stroke Best Practices and American Heart Association. Mobile applications (apps) are an emerging technology which may help bridge this deficit, however this area is understudied. The purpose of this study is to review the effect of mobile apps for stroke rehabilitation on stroke impairments and functional outcomes. Specifically, this paper will delve into the impact of varying mobile app types on stroke rehabilitation. Methods This systematic review included 29 studies: 11 randomized control trials and 18 quasi-experimental studies. Data extrapolation mapped 5 mobile app types (therapy apps, education apps, rehab videos, reminders, and a combination of rehab videos with reminders) to stroke deficits (motor paresis, aphasia, neglect), adherence to exercise, activities of daily living (ADLs), quality of life, secondary stroke prevention, and depression and anxiety. Results There were multiple studies supporting the use of therapy apps for motor paresis or aphasia, rehab videos for exercise adherence, and reminders for exercise adherence. For permutations involving other app types with stroke deficits or functional outcomes (adherence to exercise, ADLs, quality of life, secondary stroke prevention, depression and anxiety), the results were either non-significant or limited by a paucity of studies. Conclusion Mobile apps demonstrate potential to assist with stroke recovery and augment face to face rehabilitation, however, development of a mobile app should be carefully planned when targeting specific stroke deficits or functional outcomes. This study found that mobile app types which mimicked principles of effective face-to-face therapy (massed practice, task-specific practice, goal-oriented practice, multisensory stimulation, rhythmic cueing, feedback, social interaction, and constraint-induced therapy) and education (interactivity, feedback, repetition, practice exercises, social learning) had the greatest benefits. Protocol registration PROPSERO (ID CRD42021186534). Registered 21 February 2021
    Type of Medium: Online Resource
    ISSN: 1743-0003
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2164377-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    SAGE Publications ; 2021
    In:  Journal of Cerebral Blood Flow & Metabolism Vol. 41, No. 8 ( 2021-08), p. 1842-1857
    In: Journal of Cerebral Blood Flow & Metabolism, SAGE Publications, Vol. 41, No. 8 ( 2021-08), p. 1842-1857
    Abstract: The distribution and clearance of erythrocytes after subarachnoid hemorrhage (SAH) is poorly understood. We aimed to characterize the distribution of erythrocytes after SAH and the cells involved in their clearance. To visualize erythrocyte distribution, we injected fluorescently-labelled erythrocytes into the prechiasmatic cistern of mice. 10 minutes after injection, we found labelled erythrocytes in the subarachnoid space and ventricular system, and also in the perivascular spaces surrounding large penetrating arterioles. 2 and 5 days after SAH, fluorescence was confined within leptomeningeal and perivascular cells. We identified the perivascular cells as perivascular macrophages based on their morphology, location, Iba-1 immunoreactivity and preferential uptake of FITC-dextran. We subsequently depleted meningeal and perivascular macrophages 2 days before or 3 hours after SAH with clodronate liposomes. At day 5 after SAH, we found increased blood deposition in mice treated prior to SAH, but not those treated after. Treatment post-SAH improved neurological scoring, reduced neuronal cell death and perivascular inflammation, whereas pre-treatment only reduced perivascular inflammation. Our data indicate that after SAH, erythrocytes are distributed throughout the subarachnoid space extending into the perivascular spaces of parenchymal arterioles. Furthermore, meningeal and perivascular macrophages are involved in erythrocyte uptake and play an important role in outcome after SAH.
    Type of Medium: Online Resource
    ISSN: 0271-678X , 1559-7016
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2021
    detail.hit.zdb_id: 2039456-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...