GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Communications Medicine, Springer Science and Business Media LLC, Vol. 3, No. 1 ( 2023-05-17)
    Abstract: Increasingly large and complex biomedical data sets challenge conventional hypothesis-driven analytical approaches, however, data-driven unsupervised learning can detect inherent patterns in such data sets. Methods While unsupervised analysis in the medical literature commonly only utilizes a single clustering algorithm for a given data set, we developed a large-scale model with 605 different combinations of target dimensionalities as well as transformation and clustering algorithms and subsequent meta-clustering of individual results. With this model, we investigated a large cohort of 1383 patients from 59 centers in Germany with newly diagnosed acute myeloid leukemia for whom 212 clinical, laboratory, cytogenetic and molecular genetic parameters were available. Results Unsupervised learning identifies four distinct patient clusters, and statistical analysis shows significant differences in rate of complete remissions, event-free, relapse-free and overall survival between the four clusters. In comparison to the standard-of-care hypothesis-driven European Leukemia Net (ELN2017) risk stratification model, we find all three ELN2017 risk categories being represented in all four clusters in varying proportions indicating unappreciated complexity of AML biology in current established risk stratification models. Further, by using assigned clusters as labels we subsequently train a supervised model to validate cluster assignments on a large external multicenter cohort of 664 intensively treated AML patients. Conclusions Dynamic data-driven models are likely more suitable for risk stratification in the context of increasingly complex medical data than rigid hypothesis-driven models to allow for a more personalized treatment allocation and gain novel insights into disease biology.
    Type of Medium: Online Resource
    ISSN: 2730-664X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 3096949-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 108, No. 3 ( 2022-06-16), p. 690-704
    Abstract: Achievement of complete remission signifies a crucial milestone in the therapy of acute myeloid leukemia (AML) while refractory disease is associated with dismal outcomes. Hence, accurately identifying patients at risk is essential to tailor treatment concepts individually to disease biology. We used nine machine learning (ML) models to predict complete remission and 2-year overall survival in a large multicenter cohort of 1,383 AML patients who received intensive induction therapy. Clinical, laboratory, cytogenetic and molecular genetic data were incorporated and our results were validated on an external multicenter cohort. Our ML models autonomously selected predictive features including established markers of favorable or adverse risk as well as identifying markers of so-far controversial relevance. De novo AML, extramedullary AML, double-mutated CEBPA, mutations of CEBPA-bZIP, NPM1, FLT3-ITD, ASXL1, RUNX1, SF3B1, IKZF1, TP53, and U2AF1, t(8;21), inv(16)/t(16;16), del(5)/del(5q), del(17)/del(17p), normal or complex karyotypes, age and hemoglobin concentration at initial diagnosis were statistically significant markers predictive of complete remission, while t(8;21), del(5)/del(5q), inv(16)/t(16;16), del(17)/del(17p), double-mutated CEBPA, CEBPA-bZIP, NPM1, FLT3-ITD, DNMT3A, SF3B1, U2AF1, and TP53 mutations, age, white blood cell count, peripheral blast count, serum lactate dehydrogenase level and hemoglobin concentration at initial diagnosis as well as extramedullary manifestations were predictive for 2-year overall survival. For prediction of complete remission and 2-year overall survival areas under the receiver operating characteristic curves ranged between 0.77–0.86 and between 0.63–0.74, respectively in our test set, and between 0.71–0.80 and 0.65–0.75 in the external validation cohort. We demonstrated the feasibility of ML for risk stratification in AML as a model disease for hematologic neoplasms, using a scalable and reusable ML framework. Our study illustrates the clinical applicability of ML as a decision support system in hematology.
    Type of Medium: Online Resource
    ISSN: 1592-8721 , 0390-6078
    Language: Unknown
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2022
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1172-1172
    Abstract: Novel immunotherapeutic strategies like BiTE ® (bispecific T cell engager) constructs aim to eradicate neoplastic cells by TCR-independent T-cell activation, and therefore rely on the function of autologous T cells. Currently, their efficacy is also evaluated in heavily pre-treated patients with relapsed/refractory acute myeloid leukemia (AML). Previous data demonstrated dysfunction in CD8 + T cells of AML patients (Knaus et al 2018). Thus, we aimed to characterize the progressive modulation of T-cell activity over the course of AML progression to improve the optimal application of T-cell based immunotherapeutic approaches. Bone marrow mononuclear cells (BMMCs) from AML patients at time of initial diagnosis (ID), complete remission (CR), relapse (RL), as well as of age-matched healthy donors (HD) were analyzed for T-cell subset distribution and expression of exhaustion markers by flow cytometry. Additionally, T-cell function was assessed after stimulation with 1) CD3/CD28 beads; 2) AMG 330, a CD33/CD3 specific BiTE ® construct, after incubation with OCI-AML3 target cells; or 3) AMG 330 in an autologous ex vivo long-term culture system after incubation with primary AML cells (pAML). After 6 days, T cell proliferation, expression of effector molecules and cytokines, and AMG 330-mediated T-cell cytotoxicity were assessed by flow cytometry. Lastly, we performed longitudinal bulk RNA-sequencing on 5000 sorted T cells from 7 matched ID-RL primary AML samples. Immunophenotypic analysis of BM T-cell subsets revealed a shift from T NAIVE toward central/effector memory subsets during AML progression. We observed lower percentages of T NAIVE in RL (n=3) compared to CR (n=3) CD8 + T cells(11.8 vs. 45.2%, p=0.07; RL vs. CR). Conversely, RL patients showed increased percentages of CD8 + memory T cells (T CM: 23.4 vs. 6.7%; T EM: 29.4 vs. 20.2%; T EMRA: 35.3 vs. 27.8%; RL vs. CR). Further characterization of exhaustion markers exhibited a significantly higher percentage of both CD4 + and CD8 + T cells expressing 2B4 (CD244) in ID (n=19) and RL (n=13) compared to HD (n=10, both p & lt; 0.001). A higher percentage of PD-1 + CD8 + and TIM-3 + CD4 + T cells was detected in both ID and RL relative to HD (all p & lt; 0.05). However, a significantly increased percentage of CD8 + T cells expressing TIM-3 and CD160 was detected in ID relative to HD (p & lt; 0.05). Intriguingly, RL CD4 + T cells demonstrated a significantly higher level of LAG3 compared to ID (p & lt; 0.01). In line with phenotypic exhaustion features, ID (n=4) and RL (n=5) CD8 + T cells showed reduced proliferation compared to HD (n=4) CD8 + T cells after CD3/CD28 bead stimulation (both p & lt; 0.01). Correspondingly, we observed a marked reduction in the expression of Granzyme B (GZMB) by CD8 + T cells (both p & lt; 0.05). Interestingly, when compared to ID, RL CD4 + T cells showed decreased TNF-α secretion (p & lt; 0.05). In contrast to these findings, AMG 330-mediated T cell cytotoxicity against OCI-AML3 target cells was superior with RL T cells compared to ID T cells (p & lt; 0.001). The percentage of GZMB + CD8 + T cells strikingly enhanced in RL relative to ID (p & lt; 0.01). In an autologous setting with pAML samples, T cells from RL patients (n=6) showed higher AMG 330-mediated cytotoxicity compared to ID (n=9) T cells (67.7 vs. 35.2; RL vs. ID). In our longitudinal RNA-sequencing, differentially expressed genes analysis detected 61 up- and 30 downregulated genes (log2 FC & gt; 1 or & lt; -1; p & lt; 0.01) in RL T cells compared to their matched ID counterparts. Among the significantly upregulated genes in RL, we identified genes associated with memory T cell function (TP53INP2, DUSP4) and exhaustion (NR4A1, TOX2). Moreover, Gene set enrichment analysis showed significant enrichment of gene signatures associated to memory and exhausted T cells (normalized enrichment score (NES)=1.2 and 1.3; p-value= 0.026 and 0.008, respectively), depletion of oxidative phosphorylation (NES=-2.05; p adj & lt; 0.0001) and protein secretion (NES=-1.49; p adj & lt; 0.05) gene signatures in RL vs. ID T cells. Taken together, our data show that patient T cells acquire an activated/exhausted phenotype upon AML progression. However, this is not reflected in the T-cell effector functions upon AMG 330 stimulation, in contrast to bead stimulation. These observations may highlight the significant role of the AML target cells in shaping a T-cell response. To this end, we will further analyze the longitudinal communication between T cells and their corresponding AML blasts. Disclosures Brauchle: Adivo: Current Employment. Kischel: Amgen GmbH Munich: Current Employment. Buecklein: BMS/Celgene: Consultancy, Research Funding; Amgen: Consultancy, Honoraria; Kite/Gilead: Consultancy, Honoraria, Other: Congress and travel support, Research Funding; Miltenyi: Research Funding; Novartis: Consultancy, Other: congress and travel support, Research Funding, Speakers Bureau; Pfizer: Consultancy, Honoraria, Speakers Bureau. Subklewe: Novartis: Consultancy, Research Funding, Speakers Bureau; MorphoSys: Research Funding; Roche: Research Funding; Miltenyi: Research Funding; Seattle Genetics: Consultancy, Research Funding; Gilead: Consultancy, Research Funding, Speakers Bureau; BMS/Celgene: Consultancy, Research Funding, Speakers Bureau; Amgen: Consultancy, Research Funding, Speakers Bureau; Janssen: Consultancy; Pfizer: Consultancy, Speakers Bureau; Takeda: Speakers Bureau; Klinikum der Universität München: Current Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 690-691
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 8912-8913
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 102, No. 8 ( 2023-08), p. 2213-2223
    Abstract: We sought to evaluate the role of extramedullary disease (EMD) in sequential RIC retrospectively analyzing data of 144 high-risk AML patients undergoing HLA-matched transplantation. Median long-term follow-up was 11.6 years. Eighteen percent of patients ( n  = 26/144) presented with extramedullary AML (EM AML) or a history of EMD at time of transplantation. Overall relapse rate was 25% ( n  = 36/144) with 15% ( n  = 21/144) of all patients developing isolated BM relapse and 10% ( n  = 15/144) developing EM AML relapse with or without concomitant BM relapse (EM ± BM). Manifestation of EM relapse after transplantation occurred frequently at multiple sites and presented mostly as solid tumor mass. Only 3/15 patients with EM ± BM relapse showed a prior EMD manifestation. EMD prior to allogeneic transplantation had no impact on post-transplant OS when compared to non-EMD (median post-transplant OS 3.8 years versus 4.8 years; ns). Risk factors ( p  =   〈  0.1) for EM ± BM relapse included younger age and a higher number of prior intensive chemotherapies, whereas the presence of chronic GVHD was a protective factor. Median post-transplant OS (15.5 months vs. 15.5 months), RFS (9.6 months vs 7.3 months), and post-relapse OS (6.7 months vs. 6.3 months) were not significantly different between patients with isolated BM vs. EM ± BM relapse. Taken together, occurrence of EMD prior to as well as of EM ± BM AML relapse after transplantation was moderate, presenting mostly as solid tumor mass after transplantation. However, diagnosis of those does not seem to influence outcomes after sequential RIC. A higher number of chemotherapy cycles prior to transplantation was identified as recent risk factor for EM ± BM relapse.
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 11 ( 2021-11-01), p. 2780-2795
    Abstract: The clinical relevance of comprehensive molecular analysis in rare cancers is not established. We analyzed the molecular profiles and clinical outcomes of 1,310 patients (rare cancers, 75.5%) enrolled in a prospective observational study by the German Cancer Consortium that applies whole-genome/exome and RNA sequencing to inform the care of adults with incurable cancers. On the basis of 472 single and six composite biomarkers, a cross-institutional molecular tumor board provided evidence-based management recommendations, including diagnostic reevaluation, genetic counseling, and experimental treatment, in 88% of cases. Recommended therapies were administered in 362 of 1,138 patients (31.8%) and resulted in significantly improved overall response and disease control rates (23.9% and 55.3%) compared with previous therapies, translating into a progression-free survival ratio & gt;1.3 in 35.7% of patients. These data demonstrate the benefit of molecular stratification in rare cancers and represent a resource that may promote clinical trial access and drug approvals in this underserved patient population. Significance: Rare cancers are difficult to treat; in particular, molecular pathogenesis–oriented medical therapies are often lacking. This study shows that whole-genome/exome and RNA sequencing enables molecularly informed treatments that lead to clinical benefit in a substantial proportion of patients with advanced rare cancers and paves the way for future clinical trials. See related commentary by Eggermont et al., p. 2677. This article is highlighted in the In This Issue feature, p. 2659
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 821-821
    Abstract: Comprehensive molecular profiling can be successfully applied to guide targeted treatment in cancer patients, an approach commonly referred to as precision oncology. Over the past years, several clinical trials that employed subgenomic molecular profiling have demonstrated that molecularly informed decision-making across tumor entities is associated with improved clinical outcome in approximately one third of patients. To investigate the feasibility and clinical relevance of comprehensive genomic analysis, i.e. whole-exome/genome sequencing (WES/WGS) and RNA sequencing (RNA-seq), in younger adults with advanced-stage cancer across all histologies and patients with rare tumors, we established MASTER (Molecularly Aided Stratification for Tumor Eradication Research) - a prospective, multicenter precision oncology platform - at NCT Heidelberg/Dresden in 2013, which was extended to the German Cancer Consortium (DKTK) in 2016. Based on a standardized workflow, we have analyzed more than 1,700 poor-prognosis (median overall survival, 12 months) patients with advanced, heavily pretreated (median number of prior therapies, n=2) malignancies representing a broad spectrum of rare histopathologic entities. We here report the actionable findings and clinical outcomes for the first 1,311 patients discussed in cross-institutional molecular tumor board (MTB) conferences. Each MTB recommendation was based on the individual molecular profile and specific predictive molecular biomarkers identified by WES/WGS and RNA-seq. In addition to DNA alterations (single-nucleotide variants, small insertions/deletions, copy number alterations), we also used alterations identified by RNA-seq (gene fusions, aberrant gene expression) to support clinical decision-making. We categorized therapy recommendations into seven different intervention baskets and assigned evidence levels to each recommendation according to a dedicated NCT/DKTK classification system, which addresses the complexity of evaluating predictive molecular biomarkers in clinical routine. MTB recommendations were implemented in one third of cases, and overall response and disease control rates on molecularly guided treatment were improved compared to prior systemic therapies, which translated into a progression-free survival ratio of greater than 1.3 in a significant proportion of patients. Furthermore, comprehensive genomic profiling in combination with histopathologic reevaluation allowed reclassification of approximately 4% of cases, in particular soft-tissue sarcomas not otherwise specified and carcinomas of unknown primary site. This prospective study demonstrates that comprehensive molecular profiling based on WES/WGS and RNA-seq in a multiinstitutional clinical setting creates meaningful therapeutic opportunities for patients with rare cancers. Our data demonstrate the added benefit of germline and RNA analysis, providing a rationale for their routine clinical implementation. Current and future activities of the MASTER network are focused on the standardization of variant classification and evidence levels in MTB conferences, the implementation of molecularly stratified basket trials, and the integration of additional layers of patient characterization. Citation Format: Peter Horak, Christoph Heining, Andreas Mock, Simon Kreutzfeldt, Andreas Lassmann, Lino Möhrmann, Jennifer Hüllein, Dorothea Hanf, Arne Jahn, Leo Ruhnke, Laura Gieldon, Christoph E. Heilig, Veronica Teleanu, Martina Fröhlich, Sebastian Uhrig, Katja Beck, Daniela Richter, Stephan Wolf, Katrin Pfütze, Christina Geörg, Bettina Meissburger, Frederick Klauschen, Ulrich Keilholz, Sebastian Ochsenreither, Gunnar Folprecht, Jens Siveke, Sebastian Bauer, Thomas Kindler, Christian Brandts, Melanie Boerries, Anna L. Illert, Nikolas von Bubnoff, Karsten Spiekermann, Philipp J. Jost, Klaus Schulze-Osthoff, Michael Bitzer, Peter Schirmacher, Christof von Kalle, Richard F. Schlenk, Barbara Klink, Barbara Hutter, Daniel Hübschmann, Albrecht Stenzinger, Wilko Weichert, Evelin Schröck, Benedikt Brors, Hanno Glimm, Stefan Fröhling, German Cancer Consortium (DKTK). Comprehensive genomic analysis of rare cancers: Results of the MASTER precision oncology trial of the German Cancer Consortium [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 821.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: European Journal of Cancer, Elsevier BV, Vol. 181 ( 2023-03), p. 102-118
    Type of Medium: Online Resource
    ISSN: 0959-8049
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1120460-6
    detail.hit.zdb_id: 1468190-0
    detail.hit.zdb_id: 82061-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 138, No. 25 ( 2021-12-23), p. 2655-2669
    Abstract: Antibody-based immunotherapy is a promising strategy for targeting chemoresistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated by using CrossMAb and knob-into-holes technology, containing a bivalent T-cell receptor–like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms tumor protein (WT1) in the context of HLA-A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary acute myeloid leukemia (AML) cells was mediated in ex vivo long-term cocultures by using allogeneic (mean ± standard error of the mean [SEM] specific lysis, 67 ± 6% after 13-14 days; n = 18) or autologous, patient-derived T cells (mean ± SEM specific lysis, 54 ± 12% after 11-14 days; n = 8). WT1-TCB–treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean ± SEM specific lysis on days 3-4, 45.4 ± 9.0% vs 70.8 ± 8.3%; P = .015; n = 9-10). In vivo, WT1-TCB–treated humanized mice bearing SKM-1 tumors exhibited a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo, and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase 1 trial in patients with relapsed/refractory AML (#NCT04580121).
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...