GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: mBio, American Society for Microbiology, Vol. 13, No. 4 ( 2022-08-30)
    Abstract: Eosinophilia is associated with various persisting inflammatory diseases and often coincides with chronic fungal infections or fungal allergy as in the case of allergic bronchopulmonary aspergillosis (ABPA). Here, we show that intranasal administration of live Aspergillus fumigatus conidia causes fatal lung damage in eosinophilic interleukin-5 (IL-5)-transgenic mice. To further investigate the activation of eosinophils by A. fumigatus , we established a coculture system of mouse bone marrow-derived eosinophils (BMDE) with different A. fumigatus morphotypes and analyzed the secretion of cytokines, chemokines, and eicosanoids. A. fumigatus -stimulated BMDE upregulated expression of CD11b and downregulated CD62L and CCR3. They further secreted several proinflammatory mediators, including IL-4, IL-13, IL-18, macrophage inflammatory protein-1α (MIP-1α)/CC chemokine ligand 3 (CCL3), MIP-1β/CCL4, and thromboxane. This effect required direct interaction and adherence between eosinophils and A. fumigatus , as A. fumigatus culture supernatants or A. fumigatus mutant strains with impaired adhesion elicited a rather poor eosinophil response. Unexpectedly, canonical Toll-like receptor (TLR) or C-type-lectin receptor (CLR) signaling was largely dispensable, as the absence of MYD88, TRIF, or caspase recruitment domain-containing protein 9 (CARD9) resulted in only minor alterations. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway in A. fumigatus -induced eosinophil activation. Correspondingly, we could show that phosphatidylinositol 3-kinase (PI3K) inhibitors successfully prevent A. fumigatus -induced eosinophil activation. The PI3K pathway in eosinophils may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders. IMPORTANCE Allergic bronchopulmonary aspergillosis (ABPA) is caused by the fungus Aspergillus fumigatus , afflicts about five million patients globally, and is still a noncurable disease. ABPA is associated with pronounced lung eosinophilia. Activated eosinophils enhance the inflammatory response not only by degranulation of toxic proteins but also by secretion of small effector molecules. Receptors and signaling pathways involved in activation of eosinophils by A. fumigatus are currently unknown. Here, we show that A. fumigatus -elicited activation of eosinophils requires direct cell-cell contact and results in modulation of cell surface markers and rapid secretion of cytokines, chemokines, and lipid mediators. Unexpectedly, this activation occurred independently of canonical Toll-like receptor or C-type lectin receptor signaling. However, transcriptome analysis indicated a role for the PI3K-AKT-mTOR pathway, and PI3K inhibitors successfully prevented A. fumigatus -induced eosinophil activation. The PI3K pathway may therefore serve as a potential drug target to interfere with undesired eosinophil activation in fungus-elicited eosinophilic disorders.
    Type of Medium: Online Resource
    ISSN: 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  European Journal of Immunology Vol. 50, No. 7 ( 2020-07), p. 1044-1056
    In: European Journal of Immunology, Wiley, Vol. 50, No. 7 ( 2020-07), p. 1044-1056
    Abstract: Repeated inhalation of airborne conidia derived from the fungus Aspergillus fumigatus ( Af ) can lead to a severe eosinophil‐dominated inflammatory condition of the lung termed allergic bronchopulmonary aspergillosis (ABPA). ABPA affects about 5 million individuals worldwide and the mechanisms regulating lung pathology in ABPA are poorly understood. Here, we used a mouse model of ABPA to investigate the role of eosinophils and T cell‐derived IL‐4/IL‐13 for induction of allergic lung inflammation. Selective deletion of IL‐4/IL‐13 in T cells blunted the Af ‐induced lung eosinophilia and further resulted in lower expression of STAT6‐regulated chemokines and effector proteins such as Arginase 1, Relm‐α, Relm‐β, and Muc5a/c. Eosinophil‐deficient ΔdblGata mice showed lower IL‐4 expression in the lung and the number of Th2 cells in the lung parenchyma was reduced. However, expression of the goblet cell markers Clca1 and Muc5a/c, abundance of mucin‐positive cells, as well as weight gain of lungs were comparable between Af ‐challenged ΔdblGata and WT mice. Based on these results, we conclude that T cell‐derived IL‐4/IL‐13 is essential for Af ‐induced lung eosinophilia and inflammation while eosinophils may play a more subtle immunomodulatory role and should not simply be regarded as pro‐inflammatory effector cells in ABPA.
    Type of Medium: Online Resource
    ISSN: 0014-2980 , 1521-4141
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1491907-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 11, No. 7 ( 2022-04-05)
    Abstract: Right ventricular outflow tract (RVOT) stenosis after repair of tetralogy of Fallot has been linked with favorable right ventricular remodeling but adverse outcomes. The aim of our study was to assess the hemodynamic impact and prognostic relevance of right ventricular pressure load in this population. Methods and Results A total of 296 patients with repaired tetralogy of Fallot (mean age, 17.8±7.9 years) were included in a prospective cardiovascular magnetic resonance multicenter study. Myocardial strain was quantified by feature tracking technique at study entry. Follow‐up, including the need for pulmonary valve replacement, was assessed. The combined end point consisted of ventricular tachycardia and cardiac death. A higher echocardiographic RVOT peak gradient was significantly associated with smaller right ventricular volumes and less pulmonary regurgitation, but lower biventricular longitudinal strain. During a follow‐up of 10.1 (0.1–12.9) years, the primary end point was reached in 19 of 296 patients (cardiac death, n=6; sustained ventricular tachycardia, n=2; and nonsustained ventricular tachycardia, n=11). A higher RVOT gradient was associated with the combined outcome (hazard ratio [HR], 1.03; 95% CI, 1.00–1.06; P =0.026), and a cutoff gradient of ≥25 mm Hg was predictive for cardiovascular events (HR, 3.69; 95% CI, 1.47–9.27; P =0.005). In patients with pulmonary regurgitation ≥25%, a mild residual RVOT gradient (15–30 mm Hg) was not associated with a lower risk for pulmonary valve replacement. Conclusions Higher RVOT gradients were associated with less pulmonary regurgitation and smaller right ventricular dimensions but were related to reduced biventricular strain and emerged as univariate predictors of adverse events. Mild residual pressure gradients did not protect from pulmonary valve replacement. These results may have implications for the indication for RVOT reintervention in this population.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: eLife, eLife Sciences Publications, Ltd, Vol. 11 ( 2022-09-02)
    Abstract: Cells in the human body are viscoelastic: they have some of the properties of an elastic solid, like rubber, as well as properties of a viscous fluid, like oil. To carry out mechanical tasks – such as, migrating through tissues to heal a wound or to fight inflammation – cells need the right balance of viscosity and elasticity. Measuring these two properties can therefore help researchers to understand important cell tasks and how they are impacted by disease. However, quantifying these viscous and elastic properties is tricky, as both depend on the time-scale they are measured: when pressed slowly, cells appear soft and liquid, but they turn hard and thick when rapidly pressed. Here, Gerum et al. have developed a new system for measuring the viscosity and elasticity of individual cells that is fast, simple, and inexpensive. In this new method, cells are suspended in a specialized solution with a consistency similar to machine oil which is then pushed with high pressure through channels less than half a millimeter wide. The resulting flow of fluid shears the cells, causing them to elongate and rotate, which is captured using a fast camera that takes 500 images per second. Gerum et al. then used artificial intelligence to extract each cell’s shape and rotation speed from these images, and calculated their viscosity and elasticity based on existing theories of how viscoelastic objects behave in fluids. Gerum et al. also investigated how the elasticity and viscosity of cells changed with higher rotation frequencies, which corresponds to shorter time-scales. This revealed that while higher frequencies made the cells appear more viscous and elastic, the ratio between these two properties remained the same. This means that researchers can compare results obtained from different experimental techniques, even if the measurements were carried out at completely different frequencies or time-scales. The method developed by Gerum et al. provides a fast an inexpensive way for analyzing the viscosity and elasticity of cells. It could also be a useful tool for screening the effects of drugs, or as a diagnostic tool to detect diseases that affect the mechanical properties of cells.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2022
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Fungal Biology Vol. 2 ( 2021-10-18)
    In: Frontiers in Fungal Biology, Frontiers Media SA, Vol. 2 ( 2021-10-18)
    Abstract: Aspergillus fumigatus is a major fungal pathogen causing life threatening infections in immunocompromised humans and certain animals. The HOG pathway is for two reasons interesting in this context: firstly, it is a stress signaling pathway that contributes to the ability of this pathogen to adapt to various stress conditions and secondly, it is the target of antifungal agents, such as fludioxonil or pyrrolnitrin. In this study, we demonstrate that Ypd1 is an essential protein in A. fumigatus . As the central component of the multistep phosphorelay it represents the functional link between the sensor histidine kinases and the downstream response regulators SskA and Skn7. A GFP-Ypd1 fusion was found to reside in both, the cytoplasm and the nucleus and this pattern was only slightly affected by fludioxonil. A strain in which the ypd 1 gene is expressed from a tet-on promoter construct is unable to grow under non-inducing conditions and shows the characteristic features of A. fumigatus wild type hyphae treated with fludioxonil. Expression of wild type Ypd1 prevents this lethal phenotype, but expression of an Ypd1 mutant protein lacking the conserved histidine at position 89 was unable to do so, which confirms that A. fumigatus Ypd1 is a phosphotransfer protein. Generation of ypd 1 tet−on variants of several mutant strains revealed that the lethal phenotype associated with low amounts of Ypd1 depends on SskA, but not on TcsC or Skn7. The Δ ssk A ypd 1 tet−on , but not the Δ ssk AΔ skn 7 ypd 1 tet−on mutant, was sensitive to fludioxonil, which underlines the importance of Skn7 in this context. We finally succeeded to delete ypd 1, but only if ssk A and skn 7 were both inactivated, not in a Δ ssk A single mutant. Hence, a deletion of ypd 1 and an inactivation of Ypd1 by fludioxonil result in similar phenotypes and the two response regulators SskA and Skn7 are involved in both processes albeit with a different relative importance.
    Type of Medium: Online Resource
    ISSN: 2673-6128
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 3059082-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-03-05)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-03-05)
    Abstract: Aspergillus fumigatus is an important fungal pathogen that represents a major threat for severely immunocompromised patients. Cases of invasive aspergillosis are associated with a high mortality rate, which reflects the limited treatment options that are currently available. The development of novel therapeutic approaches is therefore an urgent task. An interesting compound is fludioxonil, a derivative of the bacterial secondary metabolite pyrrolnitrin. Both agents possess potent antimicrobial activity against A. fumigatus and trigger a lethal activation of the group III hybrid histidine kinase TcsC, the major sensor kinase of the High Osmolarity Glycerol (HOG) pathway in A. fumigatus . In the current study, we have characterized proteins that operate downstream of TcsC and analyzed their roles in the antifungal activity of fludioxonil and in other stress situations. We found that the SskA-SakA axis of the HOG pathway and Skn7 can independently induce an increase of the internal glycerol concentration, but each of these individual responses amounts for only half of the level found in the wild type. The lethal fludioxonil-induced ballooning occurs in the ssk A and the sak A mutant, but not in the skn 7-deficient strain, although all three strains show comparable glycerol responses. This indicates that an elevated osmotic pressure is necessary, but not sufficient and that a second, decisive and Skn7-dependent mechanism mediates the antifungal activity. We assume that fludioxonil triggers a reorganization in the fungal cell wall that reduces its rigidity, which in combination with the elevated osmotic pressure executes the lethal expansion of the fungal cells. Two findings link Skn7 to the cell wall of A. fumigatus : (1) the fludioxonil-induced massive increase in the chitin content depends on Skn7 and (2) the skn 7 mutant is more resistant to the cell wall stressor Calcofluor white. In conclusion, our data suggest that the antifungal activity of fludioxonil in A. fumigatus relies on two distinct and synergistic processes: A high internal osmotic pressure and a weakened cell wall. The involvement of Skn7 in both processes most likely accounts for its particular importance in the antifungal activity of fludioxonil.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 15, No. 7 ( 2020-7-24), p. e0236371-
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2020
    detail.hit.zdb_id: 2267670-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Polymers, MDPI AG, Vol. 14, No. 7 ( 2022-03-25), p. 1332-
    Abstract: Charge control substances (CCS) as additives for polymer powders are investigated to make polymer powders suitable for the electrophotographic powder deposition in powder-based additive manufacturing. The use of CCS unifies the occurring charge of a powder, which is crucial for this novel deposition method. Therefore, commercially available polymer powder is functionalized via dry coating in a shaker mixer with two different CCS and analyzed afterwards. The flowability and the degree of coverage of additives on the surface are used to evaluate the coating process. The thermal properties are analyzed by use of differential scanning calorimetry. Most important, the influence of the CCS on the powder charge is shown by measurements of the electrostatic surface potential at first and the powder deposition itself is performed and analyzed with selected formulations afterwards to show the potential of this method. Finally, tensile strength specimens are produced with the conventional deposition method in order to show the usability of the CCS for current machines.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...