GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2021
    In:  Blood Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1006-1006
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 1006-1006
    Abstract: Introduction: Programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) are important immune checkpoint proteins in cancer immunotherapy and targeted therapies against PD-L1 have significantly prolonged many patients' lives. Recently, high baseline platelet to lymphocyte ratio was reported to be associated with decreased patient response rate to immune checkpoint inhibition (ICI) therapies, including anti-PD-L1 therapy, suggesting the potential role of platelets in tumor immunity. Platelets express PD-L1 on their surface, and platelets binding to PD-L1 negative tumor cells can "decorate" tumor cells with PD-L1 and protect against T cell-mediated cytotoxicity. However, whether platelet can affect PD-L1 expression on tumor cells is still unknown. Methods: In this study, we designed platelet-tumor cell co-culture systems to investigate whether direct or indirect exposure to platelets affects tumor cell PD-L1 surface expression. Considering platelets can be artificially activated by commonly used cell culture medium, the co-culture was performed in platelet resuspension buffer (HEPES, NaCl, KCl, MgCl2, NaHCO3, Glucose, pH7.4) supplied with fetal bovine serum and L-glutamine. After 24 hours of co-culture, platelets were washed out and fresh culturing medium was added to tumor cells and cultured for another 24 hours. At the end of the experiments, tumor cells were harvested and the PD-L1 expression analyzed by flow cytometry and RT-qPCR. Results and discussion: Here we report that direct co-culture of platelets with either breast cancer cell line MDA-MB-468 or lung cancer cell line A549 increased tumor cell PD-L1 surface expression by up-regulating PD-L1 transcription. This platelet-induced tumor cell PD-L1 up-regulation can be partly reduced by pre-treating platelets with antiplatelet agents such as aspirin and ticagrelor, suggesting platelet activation contributes to platelet induced tumor cell PD-L1 up-regulation. The up-regulation of tumor cell PD-L1 by platelets was not due to abundant platelet cytokines such as C-C Motif Chemokine Ligand 5 (CCL5) and C-X-C motif chemokine 5 (CXCL5). However, both an epidermal growth factor (EGF) neutralizing antibody and cetuximab (EGFR neutralizing monoclonal antibody) decreased the platelet-induced increase in tumor cell PD-L1, suggesting that platelets initiate tumor cell PD-L1 transcription through the EGF signaling pathway. Our data indicate a novel function of platelets in tumor immunity and warrant further investigation to determine if targeting platelets offers a novel adjuvant approach to improve ICI therapy. Disclosures Italiano: Sierra Oncology: Consultancy; PlateletBio: Current holder of individual stocks in a privately-held company, Membership on an entity's Board of Directors or advisory committees; Carrick Therapeutics: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2023
    In:  Cold Spring Harbor Perspectives in Medicine Vol. 13, No. 1 ( 2023-01), p. a041174-
    In: Cold Spring Harbor Perspectives in Medicine, Cold Spring Harbor Laboratory, Vol. 13, No. 1 ( 2023-01), p. a041174-
    Type of Medium: Online Resource
    ISSN: 2157-1422
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2023
    detail.hit.zdb_id: 2628603-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood Advances, American Society of Hematology, Vol. 6, No. 20 ( 2022-10-25), p. 5668-5675
    Abstract: Programmed death ligand 1 (PD-L1) is an immune checkpoint protein that suppresses cytotoxic T lymphocytes and is often overexpressed in cancers. Due to favorable clinical trial results, immune checkpoint inhibition (ICI) is part of Food and Drug Administration approved immuno-oncology therapies; however, not all patients benefit from ICI therapy. High blood platelet-to-lymphocyte ratio has been associated with failure of ICI treatment, but whether platelets have a role in hindering ICI response is unclear. Here, we report that coculturing platelets with cancer cell lines increased protein and gene expression of tumor cell PD-L1, which was reduced by antiplatelet agents, such as aspirin and ticagrelor. Platelet cytokine arrays revealed that the well-established cytokines, including interferon-γ, were not the main regulators of platelet-mediated PD-L1 upregulation. Instead, the high molecular weight epidermal growth factor (EGF) is abundant in platelets, which caused an upregulation of tumor cell PD-L1. Both an EGF-neutralizing antibody and cetuximab (EGF receptor [EGFR] monoclonal antibody) inhibited platelet-induced increases in tumor cell PD-L1, suggesting that platelets induce tumor cell PD-L1 in an EGFR-dependent manner. Our data reveal a novel mechanism for platelets in tumor immune escape and warrant further investigation to determine if targeting platelets improves ICI therapeutic responses.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 8, No. 41 ( 2022-10-14)
    Abstract: Breast cancer creates pro-inflammatory megakaryocytes, producing “super-charged” platelets that exacerbate tumor cell metastasis.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2021
    In:  Blood Vol. 137, No. 23 ( 2021-06-10), p. 3174-3180
    In: Blood, American Society of Hematology, Vol. 137, No. 23 ( 2021-06-10), p. 3174-3180
    Abstract: Platelets have long been known to play important roles beyond hemostasis and thrombosis. Now recognized as a bona fide mediator of malignant disease, platelets influence various aspects of cancer progression, most notably tumor cell metastasis. Interestingly, platelets isolated from cancer patients often display distinct RNA and protein profiles, with no clear alterations in hemostatic activity. This phenotypically distinct population, termed tumor-educated platelets, now receive significant attention for their potential use as a readily available liquid biopsy for early cancer detection. Although the mechanisms underpinning platelet education are still being defined, direct uptake and storage of tumor-derived factors, signal-dependent changes in platelet RNA processing, and differential platelet production by tumor-educated megakaryocytes are the most prominent scenarios. This article aims to cover the various modalities of platelet education by tumors, in addition to assessing their diagnostic potential.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Food, Springer Science and Business Media LLC, Vol. 2, No. 3 ( 2021-03-19), p. 143-155
    Type of Medium: Online Resource
    ISSN: 2662-1355
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3002034-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...