GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Nature Vol. 596, No. 7872 ( 2021-08-19), p. 384-388
    In: Nature, Springer Science and Business Media LLC, Vol. 596, No. 7872 ( 2021-08-19), p. 384-388
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 13, No. 22 ( 2021-11-14), p. 4578-
    Abstract: The demonstration of a newly developed compact thermal imager (CTI) on the International Space Station (ISS) has provided not only a technology advancement but a rich high-resolution dataset on global clouds, atmospheric and land emissions. This study showed that the free-running CTI instrument could be calibrated to produce scientifically useful radiance imagery of the atmosphere, clouds, and surfaces with a vertical resolution of ~460 m at limb and a horizontal resolution of ~80 m at nadir. The new detector demonstrated an excellent sensitivity to detect the weak limb radiance perturbations modulated by small-scale atmospheric gravity waves. The CTI’s high-resolution imaging was used to infer vertical cloud temperature profiles from a side-viewing geometry. For nadir imaging, the combined high-resolution and high-sensitivity capabilities allowed the CTI to better separate cloud and surface emissions, including those in the planetary boundary layer (PBL) that had small contrast against the background surface. Finally, based on the ISS’s orbit, the stable detector performance and robust calibration algorithm produced valuable diurnal observations of cloud and surface emissions with respect to solar local time during May–October 2019, when the CTI had nearly continuous operation.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 14, No. 10 ( 2021-10-05), p. 6407-6418
    Abstract: Abstract. A new atmospheric ozone profile climatology has been constructed by combining daytime ozone profiles from the Aura Microwave Limb Sounder (MLS) and Modern-Era Retrospective Analysis for Research Applications version 2 (MERRA-2) Global Modeling Initiative (GMI) model simulation (M2GMI). The MLS and M2GMI ozone profiles are merged between 13 and 17 km (∼159 and 88 hPa), with MLS used for stratospheric and GMI for primarily tropospheric levels. The time record for profiles from MLS and GMI is August 2004–December 2016. The derived seasonal climatology consists of monthly zonal-mean ozone profiles in 5∘ latitude bands from 90∘ S to 90∘ N covering altitudes (in Z* log-pressure altitude) from zero to 80 km in 1 km increments. This climatology can be used as a priori information in satellite ozone retrievals, in atmospheric radiative transfer studies, and as a baseline to compare with other measured or model-simulated ozone. The MLS/GMI seasonal climatology shows a number of improvements compared with previous ozone profile climatologies based on MLS and ozonesonde measurements. These improvements are attributed mostly to continuous daily global coverage of GMI tropospheric ozone compared with sparse regional measurements from sondes. In addition to the seasonal climatology, we also derive an additive climatology to account for interannual variability in stratospheric zonal-mean ozone profiles which is based on a rotated empirical orthogonal function (REOF) analysis of Aura MLS ozone profiles. This REOF climatology starts in 1970 and captures most of the interannual variability in global stratospheric ozone including quasi-biennial oscillation (QBO) signatures.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2020
    In:  Atmospheric Measurement Techniques Vol. 13, No. 5 ( 2020-05-28), p. 2733-2749
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 5 ( 2020-05-28), p. 2733-2749
    Abstract: Abstract. Observational studies of stratospheric ozone often involve data from multiple instruments that measure the ozone at different times of day. There has been an increased awareness of the potential impact of the diurnal cycle when interpreting measurements of stratospheric ozone at altitudes in the mid- to upper stratosphere. To address this issue, we present a climatological representation of diurnal variations in ozone with a 30 min temporal resolution as a function of latitude, pressure and month, based on output from the Goddard Earth Observing System (GEOS) general circulation model coupled to the NASA Global Modeling Initiative (GMI) chemistry package (known as the GEOS-GMI chemistry model). This climatology can be applied to a wide range of ozone data analyses, including data intercomparisons, data merging and the analysis of data from a single platform in a non-sun-synchronous orbit. We evaluate the diurnal climatology by comparing mean differences between ozone measurements made at different local solar times to the differences predicted by the diurnal model. The ozone diurnal cycle is a complicated function of latitude, pressure and season, with variations of less than 5 % in the tropics and subtropics, increasing to more than 15 % near the polar day terminator in the upper stratosphere. These results compare well with previous modeling simulations and are supported by similar size variations in satellite observations. We present several example applications of the climatology in currently relevant data studies. We also compare this diurnal climatology to the diurnal signal from a previous iteration of the free-running GEOS Chemistry Climate Model (GEOSCCM) and to the ensemble runs of GEOS-GMI to test the sensitivity of the model diurnal cycle to changes in model formulation and simulated time period.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 49, No. 4 ( 2022-02-28)
    Abstract: Volcanic emission of SO 2 produces warming through climate feedbacks The warming is driven by a three orders of magnitude increase in stratospheric H 2 O vapor Climate cooling by H 2 SO 4 aerosols persists for less time than the eruption itself
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2022
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 24, No. 4 ( 2024-02-27), p. 2443-2464
    Abstract: Abstract. Satellite observations and ground-based measurements have indicated a high variability in the aerosol optical depth (AOD) in the Middle East region in recent decades. In the period that extends from 2003 to 2012, observations show a positive AOD trend of 0.01–0.04 per year or a total increase of 0.1–0.4 per decade. This study aimed to investigate if the observed trend was also captured by the NASA Goddard Earth Observing System (GEOS) model. To this end, we examined changes in the simulated dust emissions and dust AOD during this period. To understand the factors driving the increase in AOD in this region we also examined meteorological and surface parameters important for dust emissions, such as wind fields and soil moisture. Two GEOS model simulations were used in this study: the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis (with meteorological and aerosol AOD data assimilated) and MERRA-2 Global Modeling Initiative (GMI) Replay (with meteorology constrained by the MERRA-2 reanalysis but without aerosol assimilation). We did not find notable changes in the modeled 10 m wind speed and soil moisture. However, analysis of Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data did show an average decrease of 8 % per year in the region encompassing Syria and Iraq, which prompted us to quantify the effects of vegetation on dust emissions and AOD in the Middle East region. This was done by performing a sensitivity experiment in which we enhanced dust emissions in grid cells where the NDVI decreased. The simulation results supported our hypothesis that the loss of vegetation cover and the associated increase in dust emissions over Syria and Iraq can partially explain the increase in AOD downwind. The model simulations indicated dust emissions need to be 10-fold larger in those grid cells in order to reproduce the observed AOD and trend in the model.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2024
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2021
    In:  Journal of Geophysical Research: Atmospheres Vol. 126, No. 9 ( 2021-05-16)
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 126, No. 9 ( 2021-05-16)
    Abstract: Continuing trichlorofluoromethane (CFC‐11) emissions will cause additional future stratospheric ozone depletion Largest statistically significant ozone depletion occurs in the global and Antarctic spring total column, and global upper stratosphere Additional ozone depletion due to continuing CFC‐11 emissions will cause small changes in stratospheric temperature and circulation
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Remote Sensing Vol. 2 ( 2021-9-8)
    In: Frontiers in Remote Sensing, Frontiers Media SA, Vol. 2 ( 2021-9-8)
    Abstract: Discrete wavelength radiance measurements from the Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Imaging Camera (EPIC) allows derivation of global synoptic maps of total and tropospheric ozone columns every hour during Northern Hemisphere (NH) Summer or 2 hours during Northern Hemisphere winter. In this study, we present version 3 retrieval of Earth Polychromatic Imaging Camera ozone that covers the period from June 2015 to the present with improved geolocation, calibration, and algorithmic updates. The accuracy of total and tropospheric ozone measurements from EPIC have been evaluated using correlative satellite and ground-based total and tropospheric ozone measurements at time scales from daily averages to monthly means. The comparisons show good agreement with increased differences at high latitudes. The agreement improves if we only accept retrievals derived from the EPIC 317 nm triplet and limit solar zenith and satellite looking angles to 70°. With such filtering in place, the comparisons of EPIC total column ozone retrievals with correlative satellite and ground-based data show mean differences within ±5-7 Dobson Units (or 1.5–2.5%). The biases with other satellite instruments tend to be mostly negative in the Southern Hemisphere while there are no clear latitudinal patterns in ground-based comparisons. Evaluation of the EPIC ozone time series at different ground-based stations with the correlative ground-based and satellite instruments and ozonesondes demonstrated good consistency in capturing ozone variations at daily, weekly and monthly scales with a persistently high correlation ( r 2 & gt; 0.9) for total and tropospheric columns. We examined EPIC tropospheric ozone columns by comparing with ozonesondes at 12 stations and found that differences in tropospheric column ozone are within ±2.5 DU (or ∼±10%) after removing a constant 3 DU offset at all stations between EPIC and sondes. The analysis of the time series of zonally averaged EPIC tropospheric ozone revealed a statistically significant drop of ∼2–4 DU (∼5–10%) over the entire NH in spring and summer of 2020. This drop in tropospheric ozone is partially related to the unprecedented Arctic stratospheric ozone losses in winter-spring 2019/2020 and reductions in ozone precursor pollutants due to the COVID-19 pandemic.
    Type of Medium: Online Resource
    ISSN: 2673-6187
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 3091289-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 6, No. 34 ( 2020-08-21)
    Abstract: Tropospheric ozone is an important greenhouse gas, is detrimental to human health and crop and ecosystem productivity, and controls the oxidizing capacity of the troposphere. Because of its high spatial and temporal variability and limited observations, quantifying net tropospheric ozone changes across the Northern Hemisphere on time scales of two decades had not been possible. Here, we show, using newly available observations from an extensive commercial aircraft monitoring network, that tropospheric ozone has increased above 11 regions of the Northern Hemisphere since the mid-1990s, consistent with the OMI/MLS satellite product. The net result of shifting anthropogenic ozone precursor emissions has led to an increase of ozone and its radiative forcing above all 11 study regions of the Northern Hemisphere, despite NO x emission reductions at midlatitudes.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 1 ( 2020-01-08), p. 281-301
    Abstract: Abstract. The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6 µm ozone band is a fundamental quantity for understanding chemistry–climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit considerable variability in space and time that depend on the distributions of clouds, ozone (O3), water vapor (H2O), air temperature (Ta), and surface temperature (Ts). Benchmarking present-day fluxes and quantifying the relative influence of their drivers is the first step for estimating climate feedbacks from ozone radiative forcing and predicting radiative forcing evolution. To that end, we constructed observational instantaneous radiative kernels (IRKs) under clear-sky conditions, representing the sensitivities of the TOA flux in the 9.6 µm ozone band to the vertical distribution of geophysical variables, including O3, H2O, Ta, and Ts based upon the Aura Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels to present-day simulations from the Chemistry-Climate Model Initiative (CCMI) project as compared to a 2006 reanalysis assimilating satellite observations, we show that the models have large differences in TOA flux, attributable to different geophysical variables. In particular, model simulations continue to diverge from observations in the tropics, as reported in previous studies of the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) simulations. The principal culprits are tropical middle and upper tropospheric ozone followed by tropical lower tropospheric H2O. Five models out of the eight studied here have TOA flux biases exceeding 100 mW m−2 attributable to tropospheric ozone bias. Another set of five models have flux biases over 50 mW m−2 due to H2O. On the other hand, Ta radiative bias is negligible in all models (no more than 30 mW m−2). We found that the atmospheric component (AM3) of the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model and Canadian Middle Atmosphere Model (CMAM) have the lowest TOA flux biases globally but are a result of cancellation of opposite biases due to different processes. Overall, the multi-model ensemble mean bias is -133±98 mW m−2, indicating that they are too atmospherically opaque due to trapping too much radiation in the atmosphere by overestimated tropical tropospheric O3 and H2O. Having too much O3 and H2O in the troposphere would have different impacts on the sensitivity of TOA flux to O3 and these competing effects add more uncertainties on the ozone radiative forcing. We find that the inter-model TOA outgoing longwave radiation (OLR) difference is well anti-correlated with their ozone band flux bias. This suggests that there is significant radiative compensation in the calculation of model outgoing longwave radiation.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...