GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Acta Haematologica, S. Karger AG, Vol. 146, No. 2 ( 2023), p. 95-105
    Abstract: 〈 b 〉 〈 i 〉 Introduction: 〈 /i 〉 〈 /b 〉 Stroke is a severe complication of sickle cell anemia (SCA), with devastating sequelae. Transcranial Doppler (TCD) ultrasonography predicts stroke risk, but implementing TCD screening with suitable treatment for primary stroke prevention in low-resource environments remains challenging. SPHERE (NCT03948867) is a prospective phase 2 open-label hydroxyurea trial for SCA in Tanzania. 〈 b 〉 〈 i 〉 Methods: 〈 /i 〉 〈 /b 〉 After formal training and certification, local personnel screened children 2–16 years old; those with conditional (170–199 cm/s) or abnormal (≥200 cm/s) time-averaged mean velocities (TAMVs) received hydroxyurea at 20 mg/kg/day with dose escalation to maximum tolerated dose (MTD). The primary study endpoint is change in TAMV after 12 months of hydroxyurea; secondary endpoints include SCA-related clinical events, splenic volume and function, renal function, infections, hydroxyurea pharmacokinetics, and genetic modifiers. 〈 b 〉 〈 i 〉 Results: 〈 /i 〉 〈 /b 〉 Between April 2019 and April 2020, 202 children (average 6.8 ± 3.5 years, 53% female) enrolled and underwent TCD screening; 196 were deemed eligible by DNA testing. Most had numerous previous hospitalizations and transfusions, with low baseline hemoglobin (7.7 ± 1.1 g/dL) and %HbF (9.3 ± 5.4%). Palpable splenomegaly was present at enrollment in 49 (25%); average sonographic splenic volume was 103 mL (range 8–1,045 mL). TCD screening identified 22% conditional and 2% abnormal velocities, with hydroxyurea treatment initiated in 96% (45/47) eligible children. 〈 b 〉 〈 i 〉 Conclusion: 〈 /i 〉 〈 /b 〉 SPHERE has built local capacity with high-quality research infrastructure and TCD screening for SCA in Tanzania. Fully enrolled participants have a high prevalence of elevated baseline TCD velocities and splenomegaly. SPHERE will prospectively determine the benefits of hydroxyurea at MTD for primary stroke prevention, anticipating expanded access to hydroxyurea treatment across Tanzania.
    Type of Medium: Online Resource
    ISSN: 0001-5792 , 1421-9662
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2023
    detail.hit.zdb_id: 1481888-7
    detail.hit.zdb_id: 80008-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Bulletin of the World Health Organization, WHO Press, Vol. 98, No. 12 ( 2020-12-01), p. 859-868
    Type of Medium: Online Resource
    ISSN: 0042-9686
    RVK:
    Language: English
    Publisher: WHO Press
    Publication Date: 2020
    detail.hit.zdb_id: 2030027-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Molecular Biosciences, Frontiers Media SA, Vol. 10 ( 2023-6-1)
    Abstract: Introduction: Hydroxyurea is effective disease-modifying treatment for sickle cell anemia (SCA). Escalation to maximum tolerated dose (MTD) achieves superior benefits without additional toxicities, but requires dose adjustments with serial monitoring. Pharmacokinetic (PK)-guided dosing can predict a personalized optimal dose, which approximates MTD and requires fewer clinical visits, laboratory assessments, and dose adjustments. However, PK-guided dosing requires complex analytical techniques unavailable in low-resource settings. Simplified hydroxyurea PK analysis could optimize dosing and increase access to treatment. Methods: Concentrated stock solutions of reagents for chemical detection of serum hydroxyurea using HPLC were prepared and stored at −80C. On the day of analysis, hydroxyurea was serially diluted in human serum, then spiked with N-methylurea as an internal standard and analyzed using two commercial HPLC machines: 1) standard benchtop Agilent with 449 nm detector and 5 micron C18 column; and 2) portable PolyLC with 415 nm detector and 3.5 micron C18 column. After validation in the United States, the portable HPLC and chemicals were transported to Tanzania. Results: A calibration curve using hydroxyurea 2-fold dilutions ranging from 0 to 1000 µM was plotted against the hydroxyurea:N-methylurea ratio. In the United States, both HPLC systems yielded calibration curves with R 2 & gt; 0.99. Hydroxyurea prepared at known concentrations confirmed accuracy and precision within 10%–20% of the actual values. Both HPLC systems measured hydroxyurea with & lt;10% variance from the prepared concentrations, and paired analysis of samples on both machines documented & lt;15% variance. Serial measurements of 300 and 100 μM concentrations using the PolyLC system were precise with 2.5% coefficient of variance. After transport to Tanzania with setup and training, the modified PolyLC HPLC system produced similar calibration curves with R 2 & gt; 0.99. Conclusion: Increasing access to hydroxyurea for people with SCA requires an approach that eases financial and logistical barriers while optimizing safety and benefits, especially in low-resource settings. We successfully modified a portable HPLC instrument to quantify hydroxyurea, validated its precision and accuracy, and confirmed capacity building and knowledge transfer to Tanzania. HPLC measurement of serum hydroxyurea is now feasible in low-resource settings using available laboratory infrastructure. PK-guided dosing of hydroxyurea will be tested prospectively to achieve optimal treatment responses.
    Type of Medium: Online Resource
    ISSN: 2296-889X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2814330-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Archives of Psychiatric Nursing, Elsevier BV, Vol. 34, No. 1 ( 2020-02), p. 2-6
    Type of Medium: Online Resource
    ISSN: 0883-9417
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2049085-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature, Springer Science and Business Media LLC, Vol. 600, No. 7889 ( 2021-12-16), p. 472-477
    Abstract: The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19 1,2 , host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases 3–7 . They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, Springer Science and Business Media LLC, Vol. 621, No. 7977 ( 2023-09-07), p. E7-E26
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature, Springer Science and Business Media LLC, Vol. 607, No. 7917 ( 2022-07-07), p. 97-103
    Abstract: Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care 1 or hospitalization 2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling ( IL10RB and PLSCR1 ), leucocyte differentiation ( BCL11A ) and blood-type antigen secretor status ( FUT2 ). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase ( ATP11A ), and increased expression of a mucin ( MUC1 )—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules ( SELE , ICAM5 and CD209 ) and the coagulation factor F8 , all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature, Springer Science and Business Media LLC, Vol. 617, No. 7962 ( 2023-05-25), p. 764-768
    Abstract: Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown 1 to be highly efficient for discovery of genetic associations 2 . Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group 3 . Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling ( JAK1 ), monocyte–macrophage activation and endothelial permeability ( PDE4A ), immunometabolism ( SLC2A5 and AK5 ), and host factors required for viral entry and replication ( TMPRSS2 and RAB2A ).
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature, Springer Science and Business Media LLC, Vol. 619, No. 7971 ( 2023-07-27), p. E61-E61
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 8-9
    Abstract: Introduction: Hydroxyurea is a potent therapeutic agent for sickle cell anemia (SCA), and treatment at maximum tolerated dose (MTD) is becoming the standard of care. Hydroxyurea exerts its disease-modifying effects primarily through induction of fetal hemoglobin (HbF), although the cellular and molecular mechanisms by which hydroxyurea increases HbF expression remain unclear. Children with SCA treated with hydroxyurea at MTD have substantial phenotypic variation, however, as some have higher HbF responses than others. We hypothesized that unknown quantitative trait loci modulate the pharmacological induction of HbF, so we performed a large genome wide association study (GWAS) of hydroxyurea-associated HbF responses for children with SCA treated prospectively with dose escalation to MTD. Methods: We analyzed genomic DNA from 831 children with SCA enrolled in pediatric research trials from the US (HUSTLE, SWiTCH, TWiTCH), the Caribbean (EXTEND, SACRED) and sub-Saharan Africa (REACH, NOHARM); all of these trials reported robust treatment responses with average HbF & gt;20%. Study participants received hydroxyurea with dose escalation to MTD based on mild myelosuppression. Whole blood DNA was genotyped using the H3Africa SNP array (Illumina) with whole exome sequencing (WES) using NimbleGen VCRome 2.1 capture reagents and the Illumina HiSeq2500 platform. A transformed z-score for each study cohort gave a standardized measure of HbF induction relative to their steady-state level and their treatment HbF level at MTD. These standardized z-score HbF values were then used as a continuous variable for association testing using single-locus mixed model (EMMAX) adjusted for population stratification, using age, hydroxyurea dose at MTD, and sex as co-variates. We first performed an initial GWAS discovery using hydroxyurea response data from four distinct African populations (n=377). Single nucleotide variants (SNVs) with nominal significance (p & lt;0.001) in the discovery step were then selected for replication using an additional African cohort (n=168). Variants that were significant in both the discovery and replication cohorts were then verified using a cohort of US (n=200) and Caribbean (n=86) children with SCA, identifying genomic loci with consistent associations for HbF induction across all cohorts. Results: In the discovery GWAS step, no variant passed genome wide significance (p & lt;10-8) for the MTD HbF phenotype, including no significant associations with known genetic modifiers of endogenous HbF (BCL11A, HBS1L-MYB, HBG2). A total of 2057 low frequency and common SNVs had at least nominal association (p & lt;0.001) with the hydroxyurea treatment responses, of which 44 were also significant (p & lt;0.05) and with the same direction of association with HbF induction in the replication cohort. In the final verification step, these 44 significant variants were then tested in additional independent SCA cohorts with at least three demonstrating a strong effect (Table 1). The rs10978155 variant in the PTPRD gene and the rs55695413 variant in the RPH3AL gene were both consistently associated (p & lt;0.05) with lower HbF treatment responses. Another variant (rs75442556) near the ELL2 gene approached statistical significance (p=0.08) in the verification cohort and was also associated with lower HbF expression. The allele frequencies for these PTPRD, RPH3AL, and ELL2 variants were 0.32, 0.017, and 0.25, respectively, and did not affect baseline HbF levels. Children with these PTPRD, RPH3AL, and ELL2 genetic variants still had substantial HbF induction, but achieved lower hydroxyurea MTD HbF levels on average by 2.9%, 9.8%, and 2.7%, respectively. Conclusions: This large GWAS using global cohorts of children with SCA and robust prospective HbF phenotype data has identified genetic predictors of HbF hydroxyurea treatment responses. Three novel genetic loci, PTPRD, RPH3AL, and ELL2 have SNVs associated with lower HbF responses. PTPRD is a protein tyrosine phosphatase receptor involved in cellular processes such as cell growth and differentiation, while RPH3AL, a rabphilin 3A like protein, is known to be involved in calcium-ion-dependent exocytosis. ELL2 is an elongation factor for RNA polymerase II and could modify RNA processing under the cytostatic effects of hydroxyurea. These genes and variants will be investigated to determine how they impact individual HbF responses to hydroxyurea treatment. Disclosures Aygun: National Heart, Lung, and Blood Institute: Research Funding; bluebird bio: Membership on an entity's Board of Directors or advisory committees, Research Funding; National Institute of Nursing Research: Research Funding; Patient-Centered Outsomes Research Institute: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...