GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Astrophysical Journal, American Astronomical Society, Vol. 961, No. 1 ( 2024-01-01), p. 54-
    Abstract: We present the results of an ultradeep radio continuum survey, containing ∼480 hr of observations, of the Galactic globular cluster 47 Tucanae with the Australia Telescope Compact Array. This comprehensive coverage of the cluster allows us to reach rms noise levels of 1.19 μ Jy beam −1 at 5.5 GHz, 940 nJy beam −1 at 9 GHz, and 790 nJy beam −1 in a stacked 7.25 GHz image. This is the deepest radio image of a globular cluster and the deepest image ever made with the Australia Telescope Compact Array. We identify ATCA J002405.702-720452.361, a faint (6.3 ± 1.2 μ Jy at 5.5 GHz, 5.4 ± 0.9 μ Jy at 9 GHz), flat-spectrum ( α = −0.31 ± 0.54) radio source that is positionally coincident with the cluster center and potentially associated with a faint X-ray source. No convincing optical counterpart was identified. We use radio, X-ray, optical, and UV data to show that explanations involving a background active galactic nucleus, a chromospherically active binary, or a binary involving a white dwarf are unlikely. The most plausible explanations are that the source is an undiscovered millisecond pulsar or a weakly accreting black hole. If the X-ray source is associated with the radio source, the fundamental plane of black-hole activity suggests a black hole mass of ∼54–6000 M ⊙ , indicating an intermediate-mass black hole or a heavy stellar-mass black hole.
    Type of Medium: Online Resource
    ISSN: 0004-637X , 1538-4357
    RVK:
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2024
    detail.hit.zdb_id: 2960-9
    detail.hit.zdb_id: 1473835-1
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society: Letters Vol. 495, No. 1 ( 2020-06-11), p. L129-L134
    In: Monthly Notices of the Royal Astronomical Society: Letters, Oxford University Press (OUP), Vol. 495, No. 1 ( 2020-06-11), p. L129-L134
    Abstract: We present the orbit and properties of 2MASS J050051.85−093054.9, establishing it as the closest (d ≈ 71 pc) extremely low-mass white dwarf to the Sun. We find that this star is hydrogen rich with $T_\textrm {eff}\approx 10\, 500$ K, log g ≈ 5.9, and, following evolutionary models, has a mass of ≈0.17 M⊙. Independent analysis of radial velocity and Transiting Exoplanet Survey Satellite(TESS) photometric time series reveals an orbital period of ≈9.5 h. Its high velocity amplitude ($K\approx 144~\textrm {km}\, \textrm {s}^{-1}$) produces a measurable Doppler beaming effect in the TESSlight curve with an amplitude of 1 mmag. The unseen companion is most likely a faint white dwarf. J0500−0930 belongs to a class of post-common envelope systems that will most likely merge through unstable mass transfer and in specific circumstances lead to Type Ia supernova explosions.
    Type of Medium: Online Resource
    ISSN: 1745-3925 , 1745-3933
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2190759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Astronomical Society ; 2020
    In:  Research Notes of the AAS Vol. 4, No. 8 ( 2020-08-01), p. 145-
    In: Research Notes of the AAS, American Astronomical Society, Vol. 4, No. 8 ( 2020-08-01), p. 145-
    Abstract: We present new photometric and spectroscopic data on the low-mass, eclipsing binary star NSVS 11868841. Light and velocity data are analyzed and modeled. Resulting best-fit models indicate a change in the orbital period. Our 2019 October observation of secondary eclipse occurs 0.01042 days prior to that predicted by the latest published ephemeris when assuming a circular orbit. Our spectroscopic data from 2009 and 2019 yield a consistent systemic velocity of −9.78 ± 1.3 km s −1  and a mass ratio of 0.928 ± 0.016, both of which are significantly different than previous studies. Orbital period changes have not been indicated in earlier works either.
    Type of Medium: Online Resource
    ISSN: 2515-5172
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2020
    detail.hit.zdb_id: 2967356-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 520, No. 4 ( 2023-02-22), p. 6299-6311
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 520, No. 4 ( 2023-02-22), p. 6299-6311
    Abstract: We have investigated the origin of a sub-class of carbon-polluted white dwarfs (DQ) originally identified as the “hot DQ” white dwarfs. These objects are relatively hot ($10\, 000\lesssim T_{\rm eff}\lesssim 25\, 000$ K), have markedly higher carbon abundance (C-enriched), are more massive (M ≳ 0.8 M⊙) than ordinary DQs (M ∼ 0.6 M⊙), and display high space velocities. Hence, despite their young appearance their kinematic properties are those of an old white dwarf population. The way out of this dilemma is to assume that they formed via the merging of two white dwarfs. In this paper, we examine the observed characteristics of this population of “C-enriched” DQ white dwarfs and confirm that nearly half of the 63 known objects have kinematic properties consistent with those of the Galactic thick disc or halo. We have also conducted population synthesis studies and found that the merging hypothesis is indeed compatible with observations. Studies of this sub-class of white dwarfs have important implications for our understanding of Type Ia Supernovae (SNeIa), commonly used to determine the expansion history of the Universe, since the same formation channel applies to both kinds of objects. Hence, probing the properties of these white dwarfs that failed to explode may yield important constraints to the modelling of the mechanisms leading to a thermonuclear runaway.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 207232-4
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 510, No. 3 ( 2022-01-11), p. 3658-3673
    Abstract: The Galactic globular cluster (GC) NGC 3201 is the first Galactic GC observed to host dynamically confirmed stellar-mass black holes (BHs), containing two confirmed and one candidate BH. This result indicates that GCs can retain BHs, which has important implications for GC evolution. NGC 3201 has been observed as part of the MAVERIC survey of Galactic GCs. We use these data to confirm that there is no radio or X-ray detection of the three BHs, and present the first radio and X-ray limits on these sources. These limits indicate that any accretion present is at an extremely low rate and may be extremely inefficient. In particular, for the system ACS ID #21859, by assuming the system is tidally locked and any accretion is through the capture of the companion’s winds, we constrain the radiative efficiency of any accretion to ≲ 1.5 × 10−5. We also combine the radio and X-ray source catalogues from the MAVERIC survey with the existing MUSE spectroscopic surveys and the HUGS catalogue of NGC 3201 to provide a catalogue of 42 multiwavelength sources in this cluster. We identify a new red straggler source with X-ray emission, and investigate the multiwavelength properties of the sub-subgiant population in the cluster.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 207232-4
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Monthly Notices of the Royal Astronomical Society Vol. 514, No. 3 ( 2022-06-29), p. 4111-4119
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 514, No. 3 ( 2022-06-29), p. 4111-4119
    Abstract: It has been recently suggested that white dwarfs generate magnetic fields in a process analogous to the Earth. The crystallization of the core creates a compositional inversion that drives convection, and combined with rotation, this can sustain a magnetic dynamo. We reanalyse the dynamo mechanism, arising from the slow crystallization of the core, and find convective turnover times tconv of weeks to months – longer by orders of magnitude than previously thought. With white dwarf spin periods P ≪ tconv, crystallization-driven dynamos are almost always in the fast-rotating regime, where the magnetic field B is at least in equipartition with the convective motion and is possibly further enhanced by a factor of B ∝ (tconv/P)1/2, depending on the assumed dynamo scaling law. We track the growth of the crystallized core using mesa and compute the magnetic field B(Teff) as a function of the white dwarf’s effective temperature Teff. We compare this prediction with observations and show that crystallization-driven dynamos can explain some – but not all – of the ∼MG magnetic fields measured for single white dwarfs, as well as the stronger fields measured for white dwarfs in cataclysmic variables, which were spun up by mass accretion to short P. Our B(Teff) curves might also explain the clustering of white dwarfs with Balmer emission lines around Teff ≈ 7500 K.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 207232-4
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 506, No. 3 ( 2021-07-31), p. 4107-4120
    Abstract: Transitional millisecond pulsars are millisecond pulsars that switch between a rotation-powered millisecond pulsar state and an accretion-powered X-ray binary state, and are thought to be an evolutionary stage between neutron star low-mass X-ray binaries and millisecond pulsars. So far, only three confirmed systems have been identified in addition to a handful of candidates. We present the results of a multiwavelength study of the low-mass X-ray binary NGC 6652B in the globular cluster NGC 6652, including simultaneous radio and X-ray observations taken by the Karl G. Jansky Very Large Array and the Chandra X-ray Observatory, and optical spectroscopy and photometry. This source is the second brightest X-ray source in NGC 6652 ($L_{\textrm {X}}\sim 1.8 \times 10^{34}{\, \mathrm{erg\, s}^{-1}}$) and is known to be variable. We observe several X-ray flares over the duration of our X-ray observations, in addition to persistent radio emission and occasional radio flares. Simultaneous radio and X-ray data show no clear evidence of anticorrelated variability. Optical spectra of NGC 6652B indicate variable, broad H α emission that transitions from double-peaked emission to absorption over a time-scale of hours. We consider a variety of possible explanations for the source behaviour, and conclude that based on the radio and X-ray luminosities, short time-scale variability and X-ray flaring, and optical spectra, NGC 6652B is best explained as a transitional millisecond pulsar candidate that displays prolonged X-ray flaring behaviour. However, this could only be confirmed with observations of a change to the rotation-powered millisecond pulsar state.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 207232-4
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature, Springer Science and Business Media LLC, Vol. 620, No. 7972 ( 2023-08-03), p. 61-66
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 519, No. 2 ( 2022-12-30), p. 2235-2250
    Abstract: The identification and localization of fast radio bursts (FRBs) to their host galaxies have revealed important details about the progenitors of these mysterious, millisecond-long bursts of coherent radio emission. In this work, we study the most probable host galaxy of the apparently non-repeating CHIME/FRB event FRB 20190425A – a particularly high-luminosity, low-dispersion measure event that was demonstrated in a recent paper to be temporally and spatially coincident with the LIGO-Virgo-KAGRA binary neutron star merger GW190425, suggesting an astrophysical association (p-value 0.0052). In this paper, we remain agnostic to this result, and we confirm UGC10667 as the most probable host galaxy of FRB 20190425A, demonstrating that the host galaxies of low-dispersion measure, one-off CHIME FRBs can be plausibly identified. We then perform multiwavelength observations to characterize the galaxy and search for any afterglow emission associated with the FRB and its putative GW counterpart. We find no radio or optical transient emission in our observations $2.5\, \mathrm{yr}$ post-burst. UGC10667 is a spiral galaxy at z ∼ 0.03, dominated by an old stellar population. We find no evidence of a large population of young stars, with nebular emission dominated by star formation at a rate of $1\!-\!2\, ~\mathrm{M_\odot \, yr^{-1}}$. While we cannot rule out a young magnetar as the origin of FRB 20190425A, our observations are consistent with an origin in a long delay-time neutron star binary merger.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 207232-4
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 500, No. 2 ( 2020-11-26), p. 2732-2740
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 500, No. 2 ( 2020-11-26), p. 2732-2740
    Abstract: We present an analysis of photometric, spectroscopic, and spectropolarimetric data of the nearby, cool, magnetic DZ white dwarf PM J08186−3110. High-dispersion spectra show the presence of Zeeman splitted spectral lines due to the presence of a surface average magnetic field of 92 kG. The strong magnesium and calcium lines show extended wings shaped by interactions with neutral helium in a dense, cool helium-rich atmosphere. We found that the abundance of heavy elements varied between spectra taken 10 years apart but we could not establish a time-scale for these variations; such variations may be linked to surface abundance variations in the magnetized atmosphere. Finally, we show that volume-limited samples reveal that about 40 per cent of DZ white dwarfs with effective temperatures below 7000 K are magnetic.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 207232-4
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...