GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 674 ( 2023-6), p. A57-
    Abstract: Context. The emission from polycyclic aromatic hydrocarbons (PAHs) arises from the uppermost layers of protoplanetary disks, higher than the optical/near-infrared scattered light and similar to the emission from the highly thick 12 CO millimeter lines. The PAH intensity profiles trace the gas distribution and can constrain the penetration depth of UV radiation. Aims. We aim to constrain the spatial intensity profiles of the four strongest PAH emission features in the telluric N -band spectral region. Thereby, we seek to constrain the dependence of PAH properties on the (radial) location in the disk, such as charge state, the interrelation with the presence and dynamics of small silicate grains, and the correlation of PAH emission with gas or dust. Methods. We used the long-slit spectroscopy mode of the VISIR-NEAR experiment to perform diffraction-limited observations of eight nearby Herbig Ae protoplanetary disks. We extracted spectra for various locations along the slit with a spectral resolution of R ≈ 300 and performed a compositional fit at each spatial location using spectral templates of silicates and the four PAH bands. This yields the intensity versus location profiles of each species. Results. We obtained spatially resolved intensity profiles of the PAH emission features in the N band for five objects (AB Aurigae, HD 97048, HD 100546, HD 163296, and HD 169142). We observe two kinds of PAH emission geometry in our sample: centrally peaked (HD 97048) and ring-like (AB Aurigae, HD 100546, HD 163296, and potentially HD 169142). Comparing the spatial PAH emission profiles with near-infrared scattered light images, we find a strong correlation in the disk substructure but a difference in radial intensity decay rate. The PAH emission shows a less steep decline with distance from the star. Finally, we find a correlation between the presence of (sub)micron-sized silicate grains and the depletion of PAH emission within the inner regions of the disks. Conclusions. In this work we find the following: (1) PAH emission traces the extent of Herbig Ae disks to a considerable radial distance. (2) The correlation between the presence of silicate emission within the inner regions of disks and the depletion of PAH emission can result from dust-mixing and PAH coagulation mechanisms and competition over UV photons. (3) For all objects in our sample, PAHs undergo stochastic heating across the entire spatial extent of the disk and are not saturated. (4) The difference in radial intensity decay rates between the PAHs and scattered-light profiles may be attributed to shadowing and dust-settling effects, which impact the scattering grains more so than the PAHs.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 651 ( 2021-7), p. A92-
    Abstract: Context. The nature of circumstellar envelopes (CSEs) around Cepheids is a matter of ongoing debate. The physical origin of their infrared (IR) excess could be shown to either be made up of a shell of ionized gas, a dust envelope, or a combination of both. Aims. This study is aimed at constraining the geometry and the IR excess of the environment of the bright long-period Cepheid ℓ Car ( P = 35.5 days) at mid-IR wavelengths in order to understand its physical nature. Methods. We first used photometric observations in various bands (from the visible domain to the infrared) and Spitzer Space Telescope spectroscopy to constrain the IR excess of ℓ Car. Then we analyzed the VLTI/MATISSE measurements at a specific phase of observation in order to determine the flux contribution as well as the size and shape of the environment of the star in the L band. Finally, we tested the hypothesis of a shell of ionized gas in order to model the IR excess. Results. We report the first detection in the L band of a centro-symmetric extended emission around ℓ Car, of about 1.7 R ⋆ in full width at half maximum, producing an excess of about 7.0% in this band.This latter value is used to calibrate the IR excess found when comparing the photometric observations in various bands and quasi-static atmosphere models. In the N band, there is no clear evidence for dust emission from VLTI/MATISSE correlated flux and Spitzer data. On the other side, the modeled shell of ionized gas implies a more compact CSE (1.13 ± 0.02 R ⋆ ) that is also fainter (IR excess of 1% in the L band). Conclusions. We provide new evidence supporting a compact CSE for ℓ Car and we demonstrate the capabilities of VLTI/MATISSE for determining common properties of CSEs. While the compact CSE of ℓ Car is likely to be of a gaseous nature, the tested model of a shell of ionized gas is not able to simultaneously reproduce the IR excess and the interferometric observations. Further Galactic Cepheid observations with VLTI/MATISSE are necessary for determining the properties of CSEs, which may also depend on both the pulsation period and the evolutionary state of the stars.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 646 ( 2021-2), p. A3-
    Abstract: Context. The formation of planets is expected to be enhanced around snowlines in protoplanetary disks, in particular around the water snowline. Moreover, freeze-out of abundant volatile species in disks alters the chemical composition of the planet-forming material. However, the close proximity of the water snowline to the host star combined with the difficulty of observing water from Earth makes a direct detection of the water snowline in protoplanetary disks challenging. HCO + is a promising alternative tracer of the water snowline. The destruction of HCO + is dominated by gas-phase water, leading to an enhancement in the HCO + abundance once water is frozen out. Aims. Following earlier observed correlations between water and H 13 CO + emission in a protostellar envelope, the aim of this research is to investigate the validity of HCO + and the optically thin isotopologue H 13 CO + as tracers of the water snowline in protoplanetary disks and the required sensitivity and resolution to observationally confirm this. Methods. A typical Herbig Ae disk structure is assumed, and its temperature structure is modelled with the thermochemical code DALI . Two small chemical networks are then used and compared to predict the HCO + abundance in the disk: one without water and one including water. Subsequently, the corresponding emission profiles are modelled for the J = 2−1 transition of H 13 CO + and HCO + , which provides the best balance between brightness and the optical depth effects of the continuum emission and is less affected by blending with complex molecules. Models are then compared with archival ALMA data. Results. The HCO + abundance jumps by two orders of magnitude over a radial range of 2 AU outside the water snowline, which in our model is located at 4.5 AU. We find that the emission of H 13 CO + and HCO + is ring-shaped due to three effects: destruction of HCO + by gas-phase water, continuum optical depth, and molecular excitation effects. Comparing the radial emission profiles for J = 2−1 convolved with a 0′′.05 beam reveals that the presence of gas-phase water causes an additional drop of only ~13 and 24% in the centre of the disk for H 13 CO + and HCO + , respectively. For the much more luminous outbursting source V883 Ori, our models predict that the effects of dust and molecular excitation do not limit HCO + as a snowline tracer if the snowline is located at radii larger than ~40 AU. Our analysis of recent archival ALMA band 6 observations of the J = 3−2 transition of HCO + is consistent with the water snowline being located around 100 AU, further out than was previously estimated from an intensity break in the continuum emission. Conclusions. The HCO + abundance drops steeply around the water snowline, when water desorbs in the inner disk, but continuum optical depth and molecular excitation effects conceal the drop in HCO + emission due to the water snowline. Therefore, locating the water snowline with HCO + observations in disks around Herbig Ae stars is very difficult, but it is possible for disks around outbursting stars such as V883 Ori, where the snowline has moved outwards.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 652 ( 2021-8), p. A140-
    Abstract: Context. Eta Carinae is a highly eccentric, massive binary system (semimajor axis ~15.5 au) with powerful stellar winds and a phase-dependent wind-wind collision (WWC) zone. The primary star, η Car A, is a luminous blue variable (LBV); the secondary, η Car B, is a Wolf-Rayet or O star with a faster but less dense wind. Aperture-synthesis imaging allows us to study the mass loss from the enigmatic LBV η Car. Understanding LBVs is a crucial step toward improving our knowledge about massive stars and their evolution. Aims. Our aim is to study the intensity distribution and kinematics of η Car’s WWC zone. Methods. Using the VLTI-MATISSE mid-infrared interferometry instrument, we perform Br α imaging of η Car’s distorted wind. Results. We present the first VLTI-MATISSE aperture-synthesis images of η Car A’s stellar windin several spectral channels distributed across the Br α 4.052 μm line (spectral resolving power R ~ 960). Our observations were performed close to periastron passage in February 2020 (orbital phase ~ 14.0022). The reconstructed iso-velocity images show the dependence of the primary stellar wind on wavelength or line-of-sight (LOS) velocity with a spatial resolution of 6 mas (~14 au). The radius of the faintest outer wind regions is ~26 mas (~60 au). At several negative LOS velocities, the primary stellar wind is less extended to the northwest than in other directions. This asymmetry is most likely caused by the WWC. Therefore, we see both the velocity field of the undisturbed primary wind and the WWC cavity. In continuum spectral channels, the primary star wind is more compact than in line channels. A fit of the observed continuum visibilities with the visibilities of a stellar wind CMFGEN model (CMFGEN is an atmosphere code developed to model the spectra of a variety of objects) provides a full width at half maximum fit diameter of the primary stellar wind of 2.84 ± 0.06 mas (6.54 ± 0.14 au). We comparethe derived intensity distributions with the CMFGEN stellar wind model and hydrodynamic WWC models.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 648 ( 2021-4), p. A24-
    Abstract: Context. Water is a key molecule in the physics and chemistry of star and planet formation, but it is difficult to observe from Earth. The Herschel Space Observatory provided unprecedented sensitivity as well as spatial and spectral resolution to study water. The Water In Star-forming regions with Herschel (WISH) key program was designed to observe water in a wide range of environments and provide a legacy data set to address its physics and chemistry. Aims. The aim of WISH is to determine which physical components are traced by the gas-phase water lines observed with Herschel and to quantify the excitation conditions and water abundances in each of these components. This then provides insight into how and where the bulk of the water is formed in space and how it is transported from clouds to disks, and ultimately comets and planets. Methods. Data and results from WISH are summarized together with those from related open time programs. WISH targeted ~80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars (luminosities from 〈 1 to 〉 10 5 L ⊙ ) and from pre-stellar cores to protoplanetary disks. Lines of H 2 O and its isotopologs, HDO, OH, CO, and [O I], were observed with the HIFI and PACS instruments, complemented by other chemically-related molecules that are probes of ultraviolet, X-ray, or grain chemistry. The analysis consists of coupling the physical structure of the sources with simple chemical networks and using non-LTE radiative transfer calculations to directly compare models and observations. Results. Most of the far-infrared water emission observed with Herschel in star-forming regions originates from warm outflowing and shocked gas at a high density and temperature ( 〉 10 5 cm −3 , 300–1000 K, v ~ 25 km s −1 ), heated by kinetic energy dissipation. This gas is not probed by single-dish low- J CO lines, but only by CO lines with J up 〉 14. The emission is compact, with at least two different types of velocity components seen. Water is a significant, but not dominant, coolant of warm gas in the earliest protostellar stages. The warm gas water abundance is universally low: orders of magnitude below the H 2 O/H 2 abundance of 4 × 10 −4 expected if all volatile oxygen is locked in water. In cold pre-stellar cores and outer protostellar envelopes, the water abundance structure is uniquely probed on scales much smaller than the beam through velocity-resolved line profiles. The inferred gaseous water abundance decreases with depth into the cloud with an enhanced layer at the edge due to photodesorption of water ice. All of these conclusions hold irrespective of protostellar luminosity. For low-mass protostars, a constant gaseous HDO/H 2 O ratio of ~0.025 with position into the cold envelope is found. This value is representative of the outermost photodesorbed ice layers and cold gas-phase chemistry, and much higher than that of bulk ice. In contrast, the gas-phase NH 3 abundance stays constant as a function of position in low-mass pre- and protostellar cores. Water abundances in the inner hot cores are high, but with variations from 5 × 10 −6 to a few × 10 −4 for low- and high-mass sources. Water vapor emission from both young and mature disks is weak. Conclusions. The main chemical pathways of water at each of the star-formation stages have been identified and quantified. Low warm water abundances can be explained with shock models that include UV radiation to dissociate water and modify the shock structure. UV fields up to 10 2 −10 3 times the general interstellar radiation field are inferred in the outflow cavity walls on scales of the Herschel beam from various hydrides. Both high temperature chemistry and ice sputtering contribute to the gaseous water abundance at low velocities, with only gas-phase (re-)formation producing water at high velocities. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing. In cold clouds, an elegant solution is that this apparently missing oxygen is locked up in larger μ m-sized grains that do not contribute to infrared ice absorption. The fact that even warm outflows and hot cores do not show H 2 O at full oxygen abundance points to an unidentified refractory component, which is also found in diffuse clouds. The weak water vapor emission from disks indicates that water ice is locked up in larger pebbles early on in the embedded Class I stage and that these pebbles have settled and drifted inward by the Class II stage. Water is transported from clouds to disks mostly as ice, with no evidence for strong accretion shocks. Even at abundances that are somewhat lower than expected, many oceans of water are likely present in planet-forming regions. Based on the lessons for galactic protostars, the low- J H 2 O line emission ( E up 〈 300 K) observed in extragalactic sources is inferred to be predominantly collisionally excited and to originate mostly from compact regions of current star formation activity. Recommendations for future mid- to far-infrared missions are made.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 658 ( 2022-2), p. A81-
    Abstract: Context. FS Canis Majoris (FS CMa, HD 45677) is an unclassified B[e] star surrounded by an inclined dust disk. The evolutionary stage of FS CMa is still debated. Perpendicular to the circumstellar disk, a bipolar outflow was detected. Infrared aperture-synthesis imaging provides us with a unique opportunity to study the disk structure. Aims. Our aim is to study the intensity distribution of the disk of FS CMa in the mid-infrared L and N bands. Methods. We performed aperture-synthesis imaging of FS CMa with the MATISSE instrument (Multi AperTure mid-Infrared SpectroScopic Experiment) in the low spectral resolution mode to obtain images in the L and N bands. We computed radiative transfer models that reproduce the L - and N -band intensity distributions of the resolved disks. Results. We present L - and N -band aperture-synthesis images of FS CMa reconstructed in the wavelength bands of 3.4–3.8 and 8.6–9.0 μm. In the L -band image, the inner rim region of an inclined circumstellar disk and the central object can be seen with a spatial resolution of 2.7 milliarcsec (mas). An inner disk cavity with an angular diameter of ~6 × 12 mas is resolved. The L -band disk consists of a bright northwestern (NW) disk region and a much fainter southeastern (SE) region. The images suggest that we are looking at the bright inner wall of the NW disk rim, which is on the far side of the disk. In the N band, only the bright NW disk region is seen. In addition to deriving the inclination and the inner disk radius, fitting the reconstructed brightness distributions via radiative transfer modelling allows one to constrain the innermost disk structure, in particular the shape of theinner disk rim.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 658 ( 2022-2), p. A185-
    Abstract: Context. VX Sgr is a cool, evolved, and luminous red star whose stellar parameters are difficult to determine, which affects its classification. Aims. We aim to spatially resolve the photospheric extent as well as the circumstellar environment. Methods. We used interferometric observations obtained with the MATISSE instrument in the L (3–4 μm), M (4.5–5 μm), and N (8–13 μm) bands. We reconstructed monochromatic images using the MIRA software. We used 3D radiation-hydrodynamics simulations carried out with CO 5 BOLD and a uniform disc model to estimate the apparent diameter and interpret the stellar surface structures. Moreover, we employed the radiative transfer codes  OPTIM3D and  RADMC3D to compute the spectral energy distribution for the L , M , and N bands, respectively. Results. MATISSE observations unveil, for the first time, the morphology of VX Sgr across the L , M , and N bands. The reconstructed images show a complex morphology with brighter areas whose characteristics depend on the wavelength probed. We measured the angular diameter as a function of the wavelength and showed that the photospheric extent in the L and M bands depends on the opacity through the atmosphere. In addition to this, we also concluded that the observed photospheric inhomogeneities can be interpreted as convection-related surface structures. The comparison in the N band yielded a qualitative agreement between the N -band spectrum and simple dust radiative transfer simulations. However, it is not possible to firmly conclude on the interpretation of the current data because of the difficulty in constraing the model parameters using the limited accuracy of our absolute flux calibration. Conclusions. MATISSE observations and the derived reconstructed images unveil the appearance of VX Sgr’s stellar surface and circumstellar environment across a very large spectral domain for the first time.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 665 ( 2022-9), p. A32-
    Abstract: Context. Asymptotic giant branch (AGB) stars are one of the main sources of dust production in the Galaxy. However, it is not yet clear what this process looks like and where the dust happens to be condensing in the circumstellar environment. Aims. By characterizing the location of the dust and the molecules in the close environment of an AGB star, we aim to achieve a better understanding the history of the dust formation process. Methods. We observed the carbon star R Scl with the thermal-infrared VLTI/MATISSE instrument in L - and N -bands. The high angular resolution of the VLTI observations (as small as 4.4 mas in the L -band and 15 mas in the N -band with ATs), combined with a large uv -plane coverage allowed us to use image reconstruction methods. To constrain the dust and molecules’ location, we used two different methods: one using MIRA image reconstruction algorithm and the second using the 1D code RHAPSODY. Results. We found evidence of C 2 H 2 and HCN molecules between 1 and 3.4 R * which is much closer to the star than the location of the dust (between 3.8 and 17.0 R * ). We also estimated a mass-loss rate of 1.2 ± 0.4 × 10 −6 M ⊙ yr −1 . In the meantime, we confirmed the previously published characteristics of a thin dust shell, composed of amorphous carbon (amC) and silicon carbide (SiC). However, no clear SiC feature has been detected in the MATISSE visibilities. This might be caused by molecular absorption that can affect the shape of the SiC band at 11.3 µm. Conclusions. The appearance of the molecular shells is in good agreement with predictions from dynamical atmosphere models. For the first time, we co-located dust and molecules in the environment of an AGB star. We confirm that the molecules are located closer to the star than the dust. The MIRA images unveil the presence of a clumpy environment in the fuzzy emission region beyond 4.0 R * . Furthermore, with the available dynamic range and angular resolution, we did not detect the presence of a binary companion. To solve this problem, additional observations combining MATISSE and SAM-VISIR instrument should enable this detection in future studies.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society: Letters Vol. 527, No. 1 ( 2023-10-04), p. L88-L94
    In: Monthly Notices of the Royal Astronomical Society: Letters, Oxford University Press (OUP), Vol. 527, No. 1 ( 2023-10-04), p. L88-L94
    Abstract: From Nov. 2019 to May 2020, the red supergiant star Betelgeuse experienced an unprecedented drop of brightness in the visible domain called the Great Dimming event (GDE). Large atmospheric dust clouds and large photospheric convective features are suspected to be responsible for it. To better understand the dimming event, we used mid-infrared long-baseline spectro-interferometric measurements of Betelgeuse taken with the Very Large Telescope Interferometer/Multi AperTure mid-Infrared SpectroScopic Experiment (VLTI/MATISSE) instrument before (Dec. 2018), during (Feb. 2020), and after (Dec. 2020) the GDE. We present data in the 3.98–4.15 µm range to cover SiO spectral features molecules as well as adjacent continuum. We have employed geometrical models, image reconstruction, as well as radiative transfer models to monitor the spatial distribution of SiO over the stellar surface. We find a strongly inhomogeneous spatial distribution of SiO that appears to be looking very different between our observing epochs, indicative of a vigorous activity in the stellar atmosphere. The contrast of our images is small in the pseudo-continuum for all epochs, implying that our MATISSE observations support both cold spot and dust cloud model.
    Type of Medium: Online Resource
    ISSN: 1745-3925 , 1745-3933
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2190759-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 644 ( 2020-12), p. A133-
    Abstract: Context. The star-formation rates and stellar densities found in young massive clusters suggest that these stellar systems originate from gas at densities of n (H 2 ) 〉 10 6 cm −3 . Until today, however, the physical characterization of this ultra high density material remains largely unconstrained in observations. Aims. We investigate the density properties of the star-forming gas in the OMC-1 region located in the vicinity of the Orion Nebula Cluster (ONC). Methods. We mapped the molecular emission at 652 GHz in OMC-1 as part of the APEX-SEPIA660 Early Science. Results. We detect bright and extended N 2 H + ( J = 7–6) line emission along the entire OMC-1 region. Comparisons with previous ALMA data of the ( J = 1–0) transition and radiative transfer models indicate that the line intensities observed in this N 2 H + (7–6) line are produced by large mass reservoirs of gas at densities n (H 2 ) 〉 10 7 cm −3 . Conclusions. The first detection of this N 2 H + (7–6) line at parsec-scales demonstrates the extreme density conditions of the star-forming gas in young massive clusters such as the ONC. Our results highlight the unique combination of sensitivity and mapping capabilities of the new SEPIA660 receiver for the study of the ISM properties at high frequencies.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...