GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Dynamics, Copernicus GmbH, Vol. 13, No. 1 ( 2022-02-16), p. 373-392
    Abstract: Abstract. In the Baltic Sea, salinity and its large variability, both horizontal and vertical, are key physical factors in determining the overall stratification conditions. In addition to that, salinity and its changes also have large effects on various ecosystem processes. Several factors determine the observed two-layer vertical structure of salinity. Due to the excess of river runoff to the sea, there is a continuous outflow of water masses in the surface layer with a compensating inflow to the Baltic in the lower layer. Also, the net precipitation plays a role in the water balance and consequently in the salinity dynamics. The salinity conditions in the sea are also coupled with changes in the meteorological conditions. The ecosystem is adapted to the current salinity level: a change in the salinity balance would lead to ecological stress for flora and fauna, as well as related negative effects on possibilities to carry on sustainable development of the ecosystem. The Baltic Sea salinity regime has been studied for more than 100 years. In spite of that, there are still gaps in our knowledge of the changes in salinity in space and time. An important part of our understanding of salinity is its long-term changes. However, the available scenarios for the future development of salinity are still uncertain. We still need more studies on various factors related to the salinity dynamics. Among others, more knowledge is needed, e.g., from meteorological patterns at various space scales and timescales as well as mesoscale variability in precipitation. Also, updated information on river runoff and inflows of saline water is needed to close the water budget. We still do not understand the water mass exchange accurately enough between North Sea and Baltic Sea and within its sub-basins. Scientific investigations of the complicated vertical mixing processes are additionally required. This paper is a continuation and update of the BACC (Baltic Assessment of Climate Change for the Baltic Sea Region) II book, which was published in 2015, including information from articles issued until 2012. After that, there have been many new publications on the salinity dynamics, not least because of the major Baltic inflow (MBI) which took place in December 2014. Several key topics have been investigated, including the coupling of long-term variations of climate with the observed salinity changes. Here the focus is on observing and indicating the role of climate change for salinity dynamics. New results on MBI dynamics and related water mass interchange between the Baltic Sea and the North Sea have been published. Those studies also included results from the MBI-related meteorological conditions, variability in salinity, and exchange of water masses between various scales. All these processes are in turn coupled with changes in the Baltic Sea circulation dynamics.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Diversity, MDPI AG, Vol. 13, No. 2 ( 2021-02-02), p. 57-
    Abstract: Global change has led to manifold changes of marine ecosystems and biodiversity world-wide. While it has been shown that certain jellyfish and comb jelly species have increased regionally, it remains to be investigated if this is a general trend or localized phenomenon. Especially for the economically important Baltic Sea, which is characterized by an extreme physical environmental gradient, this question has not been addressed to date. Here we present a detailed account of the gelatinous macro-zooplankton community including their physiological tolerance towards abiotic conditions and resulting distribution ranges in the Baltic. We show that the arrival and establishment of non-indigenous species has led to a rising importance of jellyfish and comb jellies in the Baltic. This accounts for the comb jelly Mnemiopsis leidyi, which was first observed in Northern Europe in 2005, as well as for the hydromedusae Blackfordia virginica, first sighted in 2014. Both species have been shown to attain high population densities with pronounced grazing impact in other invasive regions. Given the current and anticipated changes of the physical environment of the Baltic Sea, especially ongoing warming, amplification of their impact can be expected.
    Type of Medium: Online Resource
    ISSN: 1424-2818
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518137-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2022
    In:  Journal of Sea Research Vol. 181 ( 2022-03), p. 102175-
    In: Journal of Sea Research, Elsevier BV, Vol. 181 ( 2022-03), p. 102175-
    Type of Medium: Online Resource
    ISSN: 1385-1101
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1497225-6
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Ecology and Evolution, Wiley, Vol. 13, No. 11 ( 2023-11)
    Abstract: Understanding individual growth in commercially exploited fish populations is key to successful stock assessment and informed ecosystem‐based fisheries management. Traditionally, growth rates in marine fish are estimated using otolith age‐readings in combination with age‐length relationships from field samples, or tag‐recapture field experiments. However, for some species, otolith‐based approaches have been proven unreliable and tag‐recapture experiments suffer from high working effort and costs as well as low recapture rates. An important alternative approach for estimating fish growth is represented by bioenergetic modelling which in addition to pure growth estimation can provide valuable insights into the processes leading to temporal growth changes resulting from environmental and related behavioural changes. We here developed an individual‐based bioenergetic model for Western Baltic cod ( Gadus morhua ), traditionally a commercially important fish species that however collapsed recently and likely suffers from climate change effects. Western Baltic cod is an ideal case study for bioenergetic modelling because of recently gained in‐situ process knowledge on spatial distribution and feeding behaviour based on highly resolved data on stomachs and fish distribution. Additionally, physiological processes such as gastric evacuation, consumption, net‐conversion efficiency and metabolic rates have been well studied for cod in laboratory experiments. Our model reliably reproduced seasonal growth patterns observed in the field. Importantly, our bioenergetic modelling approach implementing depth‐use patterns and food intake allowed us to explain the potentially detrimental effect summer heat periods have on the growth of Western Baltic cod that likely will increasingly occur in the future. Hence, our model simulations highlighted a potential mechanism on how warming due to climate change affects the growth of a key species that may apply for similar environments elsewhere.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2635675-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...