GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Forschung im Ingenieurwesen Vol. 85, No. 3 ( 2021-09), p. 795-806
    In: Forschung im Ingenieurwesen, Springer Science and Business Media LLC, Vol. 85, No. 3 ( 2021-09), p. 795-806
    Abstract: In dieser Arbeit wird die Eigenspannungsentwicklung bei Tiefziehprozessen anhand von Rundnäpfen aus dem Duplex-Edelstahlblech X2CrNiN23-4 untersucht. Unter Verwendung eines Zwei-Skalen-Ansatzes, der eine Finite-Elemente-Modellierung mit einem Mean-Field-Homogenisierungsschema kombiniert, werden die Makroeigenspannungen sowie die phasenspezifischen Mikroeigenspannungen bezüglich der Phasen Ferrit und Austenit für unterschiedliche Ziehtiefen berechnet. Der Simulationsansatz ermöglicht die numerisch effiziente Vorhersage der Makro- und phasenspezifischen Mikroeigenspannungen in jedem Integrationspunkt des gesamten Bauteils. Die Simulationsergebnisse werden anhand von röntgenographischen Eigenspannungsanalysen validiert, die an einem mit entsprechenden Prozessparametern hergestellten tiefgezogenen Napf durchgeführt wurden. Die Ergebnisse zeigen deutlich, dass der schnelle Simulationsansatz für die numerische Vorhersage der durch das Tiefziehen induzierten Eigenspannungen für den grob zweiphasigen Duplexstahl gut geeignet ist; die numerischen Ergebnisse sind in guter Übereinstimmung mit den experimentellen Daten. In Bezug auf den untersuchten Prozess wurde ein signifikanter Einfluss der Ziehtiefe, insbesondere auf die Entwicklung der Eigenspannungsverteilung in Ziehrichtung, festgestellt. Unter Berücksichtigung der entsprechenden phasenspezifischen Verfestigung ist der Zwei-Skalen-Ansatz auch für die Vorhersage von phasenspezifischen Eigenspannungen auf Bauteilebene gut geeignet.
    Type of Medium: Online Resource
    ISSN: 0015-7899 , 1434-0860
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1481282-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    King Mongkut's University of Technology North Bangkok ; 2021
    In:  Applied Science and Engineering Progress ( 2021-9-13)
    In: Applied Science and Engineering Progress, King Mongkut's University of Technology North Bangkok, ( 2021-9-13)
    Abstract: In sheet metal forming, combination of embossing and reforming allows the mechanical properties of sheet metal materials to be specifically improved. Here, local property modification is achieved by the residual stresses induced as a result of the one-sided embossing process followed by a reforming step. The residual stresses induced in this specific way can lead to a significantly increase in the fatigue strength of processed sheet metal components. However, in order to ensure this kind of component optimization in continuous operation, the induced stresses have to be homogeneous. In this respect, the main objective of the study reported about in this paper was to identify a forming strategy, consisting of the process steps embossing and reforming, that generates preferably homogeneous residual stress distributions into sheet metal blanks. For this, numerical and experimental investigations were carried out with samples of the stainless steel (X6Cr17) having a thickness of 1.5 mm. It was found that embossing and reforming, integrated into a conventional forming process, is a novel approach to specifically induce very localized homogeneous compressive residual stresses in sheet metal materials. This eliminates the need for costly post-processing by means of surface treatment.
    Type of Medium: Online Resource
    ISSN: 2672-9156 , 2673-0421
    Language: Unknown
    Publisher: King Mongkut's University of Technology North Bangkok
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Crystals, MDPI AG, Vol. 10, No. 11 ( 2020-10-27), p. 976-
    Abstract: Multi-phase materials often times consist of constituents with high contrasts in phase-specific mechanical properties. Here, even after homogeneous plastic deformation phase-specific residual stresses develop that may affect the components behaviour in service. For numerical simulation of phase-specific residual stresses, knowledge of the particular phase-specific strain hardening behaviour is essential. In this study, the strain hardening of ferrite and austenite in cold rolled duplex stainless steel of type X2CrNiN23-4 is investigated. By means of X-ray diffraction, the phase-specific load partitioning and residual stress evolution are analysed for uniaxial load application in three directions within the sheets plane, taking into account the sheet metals phase specific anisotropy. In order to assess the necessity for experimental determination of anisotropic phase specific behaviour, the strain hardening parameters, derived from only one loading direction, are implemented in a mean-field approach for prediction of phase-specific stresses. A simplified simulation approach is applied that only considers macroscopic plastic anisotropy and results are compared to experimental findings. For all investigated loading directions, it was observed that austenite is the high-strength phase. This load partitioning behaviour was confirmed by the evolution of phase-specific residual stresses as a result of uniaxial elasto-plastic loading. With the simplified and fast numerical approach, satisfying results for prediction of anisotropic phase-specific (residual) stresses are obtained.
    Type of Medium: Online Resource
    ISSN: 2073-4352
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2661516-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...