GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cellule MathDoc/CEDRAM ; 2022
    In:  Comptes Rendus. Géoscience Vol. 355, No. S1 ( 2022-12-12), p. 1-21
    In: Comptes Rendus. Géoscience, Cellule MathDoc/CEDRAM, Vol. 355, No. S1 ( 2022-12-12), p. 1-21
    Materialart: Online-Ressource
    ISSN: 1778-7025
    Sprache: Englisch
    Verlag: Cellule MathDoc/CEDRAM
    Publikationsdatum: 2022
    ZDB Id: 2079109-4
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2022
    In:  Earth's Future Vol. 10, No. 9 ( 2022-09)
    In: Earth's Future, American Geophysical Union (AGU), Vol. 10, No. 9 ( 2022-09)
    Kurzfassung: Hillslope flow sustains higher soil moisture, enhancing evapotranspiration and precipitation rates and cooling down the air temperature Hillslope flow slightly attenuates global warming At regional scale, hillslope flow attenuates climate change trends of all hydrological variables except for evapotranspiration increases
    Materialart: Online-Ressource
    ISSN: 2328-4277 , 2328-4277
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2022
    ZDB Id: 2746403-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2022
    In:  Journal of Climate Vol. 35, No. 21 ( 2022-11), p. 6897-6909
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 21 ( 2022-11), p. 6897-6909
    Kurzfassung: The representation of groundwater dynamics in land surface models and their roles in global precipitation variations has received attention in recent years. Studies have revealed the overall higher soil moisture but rather diverse precipitation changes after incorporating the groundwater component in climate models. However, groundwater effects on large-scale atmospheric energy transport, the fundamental atmospheric variable regulating Earth’s climate, have not been explored thoroughly. In this study, a pair of idealized experiments corresponding to contrast globally fixed water table depths by AMIP-type simulations in the Community Earth System Model was conducted. In the wet (shallow water table) experiments, an increased meridional surface temperature gradient makes the mean meridional energy transports and Hadley circulation stronger than dry (deep water table) experiments over the tropics. Such energy transport changes are primarily attributed to the dynamic contribution (intensified Hadley circulation). The wet experiments make the simulated world be like an aquaplanet simulation with less land–sea temperature contrast and the enhancement (reduction) of mean meridional circulation (stationary eddies) energy transports. Furthermore, the South Asian monsoon circulation in the wet experiment shows a southward shift in the premonsoon season (April–June) and slight weakening in the mature phase (July and August). This study explores the impacts of the soil conditions caused by various water table depths on global energy transport and has further implications for climate model developments and experiment designs.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2022
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 12, No. 7 ( 2020-07)
    Kurzfassung: The IPSL‐CM6A‐LR model climatology is much improved over the previous version, although some systematic biases and shortcomings persist A long preindustrial control and a large number of historical and scenario simulations have been performed as part of CMIP6 The effective climate sensitivity of the IPSL model increases from 4.1 to 4.8 K between IPSL‐CM5A‐LR and IPSL‐CM6A‐LR
    Materialart: Online-Ressource
    ISSN: 1942-2466 , 1942-2466
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2020
    ZDB Id: 2462132-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 2 ( 2020-02-10), p. 507-520
    Kurzfassung: Abstract. In this second part of a two-part study, we performed a simulation of the carbon and water budget of the Lena catchment with the land surface model ORCHIDEE MICT-LEAK, enabled to simulate dissolved organic carbon (DOC) production in soils and its transport and fate in high-latitude inland waters. The model results are evaluated for their ability to reproduce the fluxes of DOC and carbon dioxide (CO2) along the soil–inland-water continuum and the exchange of CO2 with the atmosphere, including the evasion outgassing of CO2 from inland waters. We present simulation results over the years 1901–2007 and show that the model is able to broadly reproduce observed state variables and their emergent properties across a range of interacting physical and biogeochemical processes. These include (1) net primary production (NPP), respiration and riverine hydrologic amplitude, seasonality, and inter-annual variation; (2) DOC concentrations, bulk annual flow, and their volumetric attribution at the sub-catchment level; (3) high headwater versus downstream CO2 evasion, an emergent phenomenon consistent with observations over a spectrum of high-latitude observational studies. These quantities obey emergent relationships with environmental variables like air temperature and topographic slope that have been described in the literature. This gives us confidence in reporting the following additional findings: of the ∼34 Tg C yr−1 left over as input to soil matter after NPP is diminished by heterotrophic respiration, 7 Tg C yr−1 is leached and transported into the aquatic system. Of this, over half (3.6 Tg C yr−1) is evaded from the inland water surface back into the atmosphere and the remainder (3.4 Tg C yr−1) flushed out into the Arctic Ocean, mirroring empirically derived studies. These riverine DOC exports represent ∼1.5 % of NPP. DOC exported from the floodplains is dominantly sourced from recent more “labile” terrestrial production in contrast to DOC leached from the rest of the watershed with runoff and drainage, which is mostly sourced from recalcitrant soil and litter. All else equal, both historical climate change (a spring–summer warming of 1.8 ∘C over the catchment) and rising atmospheric CO2 (+85.6 ppm) are diagnosed from factorial simulations to contribute similar significant increases in DOC transport via primary production, although this similarity may not hold in the future.
    Materialart: Online-Ressource
    ISSN: 1991-9603
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2020
    ZDB Id: 2456725-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Communications Vol. 13, No. 1 ( 2022-04-12)
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2022-04-12)
    Kurzfassung: Trade-offs between tree planting programs and wetland conservation are unclear. Here, we employ satellite-derived inundation data and a process-based land surface model (ORCHIDEE-Hillslope) to investigate the impacts of tree planting on wetland dynamics in China for 2000–2016 and the potential impacts of near-term tree planting activities for 2017–2035. We find that 160,000–190,000 km 2 (25.3–25.6%) of historical tree planting over wetland grid cells has resulted in 1,300–1,500 km 2 (0.3–0.4%) net wetland loss. Compared to moist southern regions, the dry northern and western regions show a much higher sensitivity of wetland reduction to tree planting. With most protected wetlands in China located in the drier northern and western basins, continuing tree planting scenarios are projected to lead to a  〉  10% wetland loss relative to 2000 across 4–8 out of 38 national wetland nature reserves. Our work shows how spatial optimization can help the balance of tree planting and wetland conservation targets.
    Materialart: Online-Ressource
    ISSN: 2041-1723
    Sprache: Englisch
    Verlag: Springer Science and Business Media LLC
    Publikationsdatum: 2022
    ZDB Id: 2553671-0
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Copernicus GmbH ; 2020
    In:  Hydrology and Earth System Sciences Vol. 24, No. 7 ( 2020-07-24), p. 3753-3774
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 24, No. 7 ( 2020-07-24), p. 3753-3774
    Kurzfassung: Abstract. Soil physical properties play an important role in estimating soil water and energy fluxes. Many hydrological and land surface models (LSMs) use soil texture maps to infer these properties. Here, we investigate the impact of soil texture on soil water fluxes and storage at different scales using the ORCHIDEE (ORganizing Carbon and Hydrology in Dynamic EcosystEms) LSM, forced by several complex or globally uniform soil texture maps. At the point scale, the model shows a realistic sensitivity of runoff processes and soil moisture to soil texture and reveals that loamy textures give the highest evapotranspiration and lowest total runoff rates. The three tested complex soil texture maps result in similar water budgets at all scales, compared to the uncertainties of observation-based products and meteorological forcing datasets, although important differences can be found at the regional scale, particularly in areas where the different maps disagree on the prevalence of clay soils. The three tested soil texture maps are also found to be similar by construction, with a shared prevalence of loamy textures, and have a spatial overlap over 40 % between each pair of maps, which explains the overall weak impact of soil texture map change. A useful outcome is that the choice of the input soil texture map is not crucial for large-scale modelling, but the added value of more detailed soil information (horizontal and vertical resolution, soil composition) deserves further studies.
    Materialart: Online-Ressource
    ISSN: 1607-7938
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2020
    ZDB Id: 2100610-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 25, No. 4 ( 2021-04-22), p. 2199-2221
    Kurzfassung: Abstract. Evaluating land surface models (LSMs) using available observations is important for understanding the potential and limitations of current Earth system models in simulating water- and carbon-related variables. To reveal the error sources of a LSM, five essential climate variables have been evaluated in this paper (i.e., surface soil moisture, evapotranspiration, leaf area index, surface albedo, and precipitation) via simulations with the IPSL (Institute Pierre Simon Laplace) LSM ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) model, particularly focusing on the difference between (i) forced simulations with atmospheric forcing data (WATCH Forcing Data ERA-Interim – WFDEI) and (ii) coupled simulations with the IPSL atmospheric general circulation model. Results from statistical evaluation, using satellite- and ground-based reference data, show that ORCHIDEE is well equipped to represent spatiotemporal patterns of all variables in general. However, further analysis against various landscape and meteorological factors (e.g., plant functional type, slope, precipitation, and irrigation) suggests potential uncertainty relating to freezing and/or snowmelt, temperate plant phenology, irrigation, and contrasted responses between forced and coupled mode simulations. The biases in the simulated variables are amplified in the coupled mode via surface–atmosphere interactions, indicating a strong link between irrigation–precipitation and a relatively complex link between precipitation–evapotranspiration that reflects the hydrometeorological regime of the region (energy limited or water limited) and snow albedo feedback in mountainous and boreal regions. The different results between forced and coupled modes imply the importance of model evaluation under both modes to isolate potential sources of uncertainty in the model.
    Materialart: Online-Ressource
    ISSN: 1607-7938
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2021
    ZDB Id: 2100610-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 24, No. 11 ( 2020-11-10), p. 5203-5230
    Kurzfassung: Abstract. Plant activity in semi-arid ecosystems is largely controlled by pulses of precipitation, making them particularly vulnerable to increased aridity that is expected with climate change. Simple bucket-model hydrology schemes in land surface models (LSMs) have had limited ability in accurately capturing semi-arid water stores and fluxes. Recent, more complex, LSM hydrology models have not been widely evaluated against semi-arid ecosystem in situ data. We hypothesize that the failure of older LSM versions to represent evapotranspiration, ET, in arid lands is because simple bucket models do not capture realistic fluctuations in upper-layer soil moisture. We therefore predict that including a discretized soil hydrology scheme based on a mechanistic description of moisture diffusion will result in an improvement in model ET when compared to data because the temporal variability of upper-layer soil moisture content better corresponds to that of precipitation inputs. To test this prediction, we compared ORCHIDEE LSM simulations from (1) a simple conceptual 2-layer bucket scheme with fixed hydraulic parameters and (2) an 11-layer discretized mechanistic scheme of moisture diffusion in unsaturated soil based on Richards equations, against daily and monthly soil moisture and ET observations, together with data-derived estimates of transpiration / evapotranspiration, T∕ET, ratios, from six semi-arid grass, shrub, and forest sites in the south-western USA. The 11-layer scheme also has modified calculations of surface runoff, water limitation, and resistance to bare soil evaporation, E, to be compatible with the more complex hydrology configuration. To diagnose remaining discrepancies in the 11-layer model, we tested two further configurations: (i) the addition of a term that captures bare soil evaporation resistance to dry soil; and (ii) reduced bare soil fractional vegetation cover. We found that the more mechanistic 11-layer model results in a better representation of the daily and monthly ET observations. We show that, as predicted, this is because of improved simulation of soil moisture in the upper layers of soil (top ∼ 10 cm). Some discrepancies between observed and modelled soil moisture and ET may allow us to prioritize future model development and the collection of additional data. Biases in winter and spring soil moisture at the forest sites could be explained by inaccurate soil moisture data during periods of soil freezing and/or underestimated snow forcing data. Although ET is generally well captured by the 11-layer model, modelled T∕ET ratios were generally lower than estimated values across all sites, particularly during the monsoon season. Adding a soil resistance term generally decreased simulated bare soil evaporation, E, and increased soil moisture content, thus increasing transpiration, T, and reducing the negative bias between modelled and estimated monsoon T∕ET ratios. This negative bias could also be accounted for at the low-elevation sites by decreasing the model bare soil fraction, thus increasing the amount of transpiring leaf area. However, adding the bare soil resistance term and decreasing the bare soil fraction both degraded the model fit to ET observations. Furthermore, remaining discrepancies in the timing of the transition from minimum T∕ET ratios during the hot, dry May–June period to high values at the start of the monsoon in July–August may also point towards incorrect modelling of leaf phenology and vegetation growth in response to monsoon rains. We conclude that a discretized soil hydrology scheme and associated developments improve estimates of ET by allowing the modelled upper-layer soil moisture to more closely match the pulse precipitation dynamics of these semi-arid ecosystems; however, the partitioning of T from E is not solved by this modification alone.
    Materialart: Online-Ressource
    ISSN: 1607-7938
    Sprache: Englisch
    Verlag: Copernicus GmbH
    Publikationsdatum: 2020
    ZDB Id: 2100610-6
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    Elsevier BV ; 2020
    In:  Quaternary Science Reviews Vol. 240 ( 2020-07), p. 106389-
    In: Quaternary Science Reviews, Elsevier BV, Vol. 240 ( 2020-07), p. 106389-
    Materialart: Online-Ressource
    ISSN: 0277-3791
    RVK:
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2020
    ZDB Id: 780249-3
    ZDB Id: 1495523-4
    SSG: 14
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...