GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 54, No. 4 ( 2022-04), p. 412-436
    Abstract: Characterization of the genetic landscape of Alzheimer’s disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/‘proxy’ AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-04-12)
    Abstract: Genetics play an important role in late-onset Alzheimer’s Disease (AD) etiology and dozens of genetic variants have been implicated in AD risk through large-scale GWAS meta-analyses. However, the precise mechanistic effects of most of these variants have yet to be determined. Deeply phenotyped cohort data can reveal physiological changes associated with genetic risk for AD across an age spectrum that may provide clues to the biology of the disease. We utilized over 2000 high-quality quantitative measurements obtained from blood of 2831 cognitively normal adult clients of a consumer-based scientific wellness company, each with CLIA-certified whole-genome sequencing data. Measurements included: clinical laboratory blood tests, targeted chip-based proteomics, and metabolomics. We performed a phenome-wide association study utilizing this diverse blood marker data and 25 known AD genetic variants and an AD-specific polygenic risk score (PGRS), adjusting for sex, age, vendor (for clinical labs), and the first four genetic principal components; sex-SNP interactions were also assessed. We observed statistically significant SNP-analyte associations for five genetic variants after correction for multiple testing (for SNPs in or near NYAP1 , ABCA7 , INPP5D , and APOE ), with effects detectable from early adulthood. The ABCA7 SNP and the APOE2 and APOE4 encoding alleles were associated with lipid variability, as seen in previous studies; in addition, six novel proteins were associated with the e2 allele. The most statistically significant finding was between the NYAP1 variant and PILRA and PILRB protein levels, supporting previous functional genomic studies in the identification of a putative causal variant within the PILRA gene. We did not observe associations between the PGRS and any analyte. Sex modified the effects of four genetic variants, with multiple interrelated immune-modulating effects associated with the PICALM variant. In post-hoc analysis, sex-stratified GWAS results from an independent AD case–control meta-analysis supported sex-specific disease effects of the PICALM variant, highlighting the importance of sex as a biological variable. Known AD genetic variation influenced lipid metabolism and immune response systems in a population of non-AD individuals, with associations observed from early adulthood onward. Further research is needed to determine whether and how these effects are implicated in early-stage biological pathways to AD. These analyses aim to complement ongoing work on the functional interpretation of AD-associated genetic variants.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Alzheimer's & Dementia Vol. 18, No. S3 ( 2022-12)
    In: Alzheimer's & Dementia, Wiley, Vol. 18, No. S3 ( 2022-12)
    Abstract: Microtubule associated protein tau ( MAPT ) is a major risk gene for multiple neurodegenerative diseases including Progressive supranuclear palsy (PSP), Corticobasal degeneration (CBD) and Alzheimer’s disease (AD) where disease specific imbalance in 3R: 4R tau isoforms is noted. Since pathogenic mutations in the coding region of MAPT is minimal in these diseases, it is likely that the deviation from the normal equimolar concentration of 3R: 4R tau is due to altered regulation through its regulatory elements. One such potential regulator is suspected to be MAPT intronic SNP, rs242561. This SNP lies within NRF2‐bound anti‐oxidant response element and is actively transcribed in hippocampus but repressed in most non‐brain tissues. It is also a chromHMM enhancer in substantia nigra. However, expression studies on this SNP are discordant and inconclusive. In the present study we investigate whether rs242561 has any role in tau regulation in mice. Method We deleted 756 bp sequence encompassing the syntenic base of rs242561 in mouse by CRISPR‐Cas9 genome editing. Brain tissues from cortex, cerebellum and hippocampus were dissected from adult wild type, heterozygous and homozygogus mice with the deletion to study expression of tau. Result We observed reduced level of tau in cortical tissues of adult heterozygous and homozygous mice (heterozygote 〈 homozygote) than the wild type but not in hippocampus and cortex. Conclusion Our preliminary study suggests rs242561 might have a role in regulating the expression of tau in adult mice cortex.
    Type of Medium: Online Resource
    ISSN: 1552-5260 , 1552-5279
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2201940-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...