GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The Endocrine Society ; 2021
    In:  Endocrinology Vol. 162, No. 12 ( 2021-12-01)
    In: Endocrinology, The Endocrine Society, Vol. 162, No. 12 ( 2021-12-01)
    Abstract: Glucose is a major energy source for growth. At birth, neonates must change their energy source from maternal supply to its own glucose production. The mechanism of this transition has not been clearly elucidated. To evaluate the possible roles of steroids in this transition, here we examine the defects associated with energy production of a mouse line that cannot synthesize steroids de novo due to the disruption of its Cyp11a1 (cytochrome P450 family 11 subfamily A member 1) gene. The Cyp11a1 null embryos had insufficient blood insulin and failed to store glycogen in the liver since embryonic day 16.5. Their blood glucose dropped soon after maternal deprivation, and the expression of hepatic gluconeogenic and glycogenic genes were reduced. Insulin was synthesized in the mutant fetal pancreas but failed to be secreted. Maternal glucocorticoid supply rescued the amounts of blood glucose, insulin, and liver glycogen in the fetus but did not restore expression of genes for glycogen synthesis, indicating the requirement of de novo glucocorticoid synthesis for glycogen storage. Thus, our investigation of Cyp11a1 null embryos reveals that the energy homeostasis is established before birth, and fetal steroids are required for the regulation of glycogen synthesis, hepatic gluconeogenesis, and insulin secretion at the fetal stage.
    Type of Medium: Online Resource
    ISSN: 0013-7227 , 1945-7170
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2021
    detail.hit.zdb_id: 2011695-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Cell and Developmental Biology Vol. 10 ( 2022-4-4)
    In: Frontiers in Cell and Developmental Biology, Frontiers Media SA, Vol. 10 ( 2022-4-4)
    Abstract: Zebrafish is a popular research model; but its mechanism of sex determination is unclear and the sex of juvenile fish cannot be distinguished. To obtain fish with defined sex, we crossed domesticated zebrafish with the Nadia strain that has a female-dominant W segment. These fish were placed on a ziwi:GFP background to facilitate sorting of fluorescent germ cells for transcriptomic analysis. We analyzed the transcriptomes of germ cells at 10–14 days postfertilization (dpf), when sex dimorphic changes started to appear. Gene ontology showed that genes upregulated in the 10-dpf presumptive females are involved in cell cycles. This correlates with our detection of increased germ cell numbers and proliferation. We also detected upregulation of meiotic genes in the presumptive females at 14 dpf. Disruption of a meiotic gene, sycp3 , resulted in sex reversal to infertile males. The germ cells of sycp3 mutants could not reach diplotene and underwent apoptosis. Preventing apoptosis by disrupting tp53 restored female characteristics in sycp3 mutants, demonstrating that adequate germ cells are required for female development. Thus, our transcriptome and gene mutation demonstrate that initial germ cell proliferation followed by meiosis is the hallmark of female differentiation in zebrafish.
    Type of Medium: Online Resource
    ISSN: 2296-634X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2737824-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Clinical Endocrinology & Metabolism, The Endocrine Society, Vol. 105, No. 4 ( 2020-04-01), p. e1718-e1728
    Abstract: The clinical effects of classical 3β-hydroxysteroid dehydrogenase 2 (3βHSD2) deficiency are insufficiently defined due to a limited number of published cases. Objective To evaluate an integrated steroid metabolome and the short- and long-term clinical features of 3βHSD2 deficiency. Design Multicenter, cross-sectional study. Setting Nine tertiary pediatric endocrinology clinics across Turkey. Patients Children with clinical diagnosis of 3βHSD2 deficiency. Main Outcome Measures Clinical manifestations, genotype-phenotype-metabolomic relations. A structured questionnaire was used to evaluate the data of patients with clinical 3βHSD2 deficiency. Genetic analysis of HSD3B2 was performed using Sanger sequencing. Novel HSD3B2 mutations were studied in vitro. Nineteen plasma adrenal steroids were measured using LC-MS/MS. Results Eleven homozygous HSD3B2 mutations (6 novel) were identified in 31 children (19 male/12 female; mean age: 6.6 ± 5.1 yrs). The patients with homozygous pathogenic HSD3B2 missense variants of  & gt; 5% of wild type 3βHSD2 activity in vitro had a non-salt–losing clinical phenotype. Ambiguous genitalia was an invariable feature of all genetic males, whereas only 1 of 12 female patients presented with virilized genitalia. Premature pubarche was observed in 78% of patients. In adolescence, menstrual irregularities and polycystic ovaries in females and adrenal rest tumors and gonadal failure in males were observed. Conclusions Genetically-documented 3βHSD2 deficiency includes salt-losing and non-salt–losing clinical phenotypes. Spared mineralocorticoid function and unvirilized genitalia in females may lead to misdiagnosis and underestimation of the frequency of 3βHSD2 deficiency. High baseline 17OHPreg to cortisol ratio and low 11-oxyandrogen concentrations by LC-MS/MS unequivocally identifies patients with 3βHSD2 deficiency.
    Type of Medium: Online Resource
    ISSN: 0021-972X , 1945-7197
    RVK:
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2020
    detail.hit.zdb_id: 2026217-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Cell & Bioscience Vol. 12, No. 1 ( 2022-12-01)
    In: Cell & Bioscience, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-12-01)
    Abstract: Pregnenolone (P5) is a neurosteroid that promotes microtubule polymerization. It also reduces stress and negative symptoms of schizophrenia, promotes memory, as well as recovery from spinal cord injury. P5 is the first substance in the steroid-synthetic pathway; it can be further metabolized into other steroids. Therefore, it is difficult to differentiate the roles of P5 versus its metabolites in the brain. To alleviate this problem, we synthesized and screened a series of non-metabolizable P5 derivatives for their ability to polymerize microtubules similar to P5. Results We identified compound #43 (3-beta-pregnenolone acetate), which increased microtubule polymerization. We showed that compound #43 modified microtubule dynamics in live cells, increased neurite outgrowth and changed growth cone morphology in mouse cerebellar granule neuronal culture. Furthermore, compound #43 promoted the formation of stable microtubule tracks in zebrafish developing cerebellar axons. Conclusions We have developed compound #43, a nonmetabolized P5 analog, that recapitulates P5 functions in vivo and can be a new therapeutic candidate for the treatment of neurodevelopmental diseases.
    Type of Medium: Online Resource
    ISSN: 2045-3701
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2593367-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Molecular and Cellular Endocrinology Vol. 531 ( 2021-07), p. 111316-
    In: Molecular and Cellular Endocrinology, Elsevier BV, Vol. 531 ( 2021-07), p. 111316-
    Type of Medium: Online Resource
    ISSN: 0303-7207
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1500651-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2022
    In:  Biochemical and Biophysical Research Communications Vol. 636 ( 2022-12), p. 84-88
    In: Biochemical and Biophysical Research Communications, Elsevier BV, Vol. 636 ( 2022-12), p. 84-88
    Type of Medium: Online Resource
    ISSN: 0006-291X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1461396-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The FASEB Journal, Wiley, Vol. 36, No. 1 ( 2022-01)
    Type of Medium: Online Resource
    ISSN: 0892-6638 , 1530-6860
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1468876-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Cell and Developmental Biology Vol. 9 ( 2021-7-7)
    In: Frontiers in Cell and Developmental Biology, Frontiers Media SA, Vol. 9 ( 2021-7-7)
    Abstract: Fish gonads develop in very diverse ways different from mammalian gonads. This diversity is contributed by species-specific factors. Gonadal somatic cell-derived factor (Gsdf) is one such factor. The gsdf gene exists mostly in teleosts and is absent in many tetrapods, probably as a result of two gene losses during evolution. The gsdf transcript is expressed mainly in gonadal somatic cells, including Sertoli cell in testis and granulosa cells in ovary; however, these gonadal somatic cells can surround many types of germ cells at different developmental stages depending on the fish species. The function of gsdf is also variable. It is involved in germ cell proliferation, testicular formation, ovarian development and even male sex determination. Here, we summarize the common and diverse expression, regulation and functions of gsdf among different fish species with aspect of evolution.
    Type of Medium: Online Resource
    ISSN: 2296-634X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2737824-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Journal of Biomedical Science Vol. 29, No. 1 ( 2022-08-18)
    In: Journal of Biomedical Science, Springer Science and Business Media LLC, Vol. 29, No. 1 ( 2022-08-18)
    Abstract: CYP11A1 is a protein located in the inner membrane of mitochondria catalyzing the first step of steroid synthesis. As a marker gene for steroid-producing cells, the abundance of CYP11A1 characterizes the extent of steroidogenic cell differentiation. Besides, the mitochondria of fully differentiated steroidogenic cells are specialized with tubulovesicular cristae. The participation of CYP11A1 in the change of mitochondrial structure and the differentiation of steroid-producing cells, however, has not been investigated. Methods We engineered nonsteroidogenic monkey kidney COS1 cells to express CYP11A1 upon doxycycline induction and examined the mitochondrial structure of these cells. We also mapped the CYP11A1 domains that confer structural changes of mitochondria. We searched for CYP11A1-interacting proteins and investigated the role of this interacting protein in shaping mitochondrial structure. Finally, we examined the effect of CYP11A1 overexpression on the amount of mitochondrial contact site and cristae organizing system. Results We found that CYP11A1 overexpression led to the formation of tubulovesicular cristae in mitochondria. We also identified the A’-helix located at amino acid #57–68 to be sufficient for membrane insertion and crista remodeling. We identified heat shock protein 60 (Hsp60) as the CYP11A1-interacting protein and showed that Hsp60 is required for CYP11A1 accumulation and crista remodeling. Finally, we found that the small MIC10 subcomplex of the mitochondrial contact site and cristae organizing system was reduced when CYP11A1 was overexpressed. Conclusions CYP11A1 participates in the formation of tubulovesicular cristae in the mitochondria of steroidogenic cells. Its A’-helix is sufficient for the formation of tubulovesicular cristae and for protein integration into the membrane. CYP11A1 interacts with Hsp60, which is required for CYP11A1 accumulation. The accumulation of CYP11A1 leads to the reduction of MIC10 complex and changes mitochondrial structure.
    Type of Medium: Online Resource
    ISSN: 1423-0127
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1482918-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Communications Biology, Springer Science and Business Media LLC, Vol. 3, No. 1 ( 2020-10-27)
    Abstract: An amendment to this paper has been published and can be accessed via a link at the top of the paper.
    Type of Medium: Online Resource
    ISSN: 2399-3642
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2919698-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...