GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 125, No. 19 ( 2020-10-16)
    Abstract: Ambient hydroxyl group mass correlated strongly to sodium, and their ratio for the limited samples available correlated to dissolved organic carbon normalized by salinity for generated sea spray aerosol Non‐combustion, likely secondary biogenic, sources contribute 47–88% of submicron organic mass and 21–86% of submicron sulfate during marine periods The fraction of particles in the 0.1–0.2 μm size range that were cloud condensation nuclei was highest during early spring due to a larger fraction of hygroscopic sulfate
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing of Environment, Elsevier BV, Vol. 300 ( 2024-01), p. 113898-
    Type of Medium: Online Resource
    ISSN: 0034-4257
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1498713-2
    SSG: 11
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Marine Science Vol. 7 ( 2021-1-18)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 7 ( 2021-1-18)
    Abstract: This work presents an overview of a unique set of surface ocean dimethylsulfide (DMS) measurements from four shipboard field campaigns conducted during the North Atlantic Aerosol and Marine Ecosystem Study (NAAMES) project. Variations in surface seawater DMS are discussed in relation to biological and physical observations. Results are considered at a range of timescales (seasons to days) and spatial scales (regional to sub-mesoscale). Elevated DMS concentrations are generally associated with greater biological productivity, although chlorophyll a (Chl) only explains a small fraction of the DMS variability (15%). Physical factors that determine the location of oceanic temperature fronts and depth of vertical mixing have an important influence on seawater DMS concentrations during all seasons. The interplay of biomass and physics influences DMS concentrations at regional/seasonal scales and at smaller spatial and shorter temporal scales. Seawater DMS measurements are compared with the global seawater DMS climatology and predictions made using a recently published algorithm and by a neural network model. The climatology is successful at capturing the seasonal progression in average seawater DMS, but does not reproduce the shorter spatial/temporal scale variability. The input terms common to the algorithm and neural network approaches are biological (Chl) and physical (mixed layer depth, photosynthetically active radiation, seawater temperature). Both models predict the seasonal North Atlantic average seawater DMS trends better than the climatology. However, DMS concentrations tend to be under-predicted and the episodic occurrence of higher DMS concentrations is poorly predicted. The choice of climatological seawater DMS product makes a substantial impact on the estimated DMS flux into the North Atlantic atmosphere. These results suggest that additional input terms are needed to improve the predictive capability of current state-of-the-art approaches to estimating seawater DMS.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2757748-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 4 ( 2022-03-02), p. 2795-2815
    Abstract: Abstract. Atmospheric marine particle concentrations impact cloud properties, which strongly impact the amount of solar radiation reflected back into space or absorbed by the ocean surface. While satellites can provide a snapshot of current conditions at the overpass time, models are necessary to simulate temporal variations in both particle and cloud properties. However, poor model accuracy limits the reliability with which these tools can be used to predict future climate. Here, we leverage the comprehensive ocean ecosystem and atmospheric aerosol–cloud dataset obtained during the third deployment of the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES3). Airborne and ship-based measurements were collected in and around a cold-air outbreak during a 3 d (where d stands for day) intensive operations period from 17–19 September 2017. Cold-air outbreaks are of keen interest for model validation because they are challenging to accurately simulate, which is due, in part, to the numerous feedbacks and sub-grid-scale processes that influence aerosol and cloud evolution. The NAAMES observations are particularly valuable because the flight plans were tailored to lie along Lagrangian trajectories, making it possible to spatiotemporally connect upwind and downwind measurements with the state-of-the-art FLEXible PARTicle (FLEXPART) Lagrangian particle dispersion model and then calculate a rate of change in particle properties. Initial aerosol conditions spanning an east–west, closed-cell-to-clear-air transition region of the cold-air outbreak indicate similar particle concentrations and properties. However, despite the similarities in the aerosol fields, the cloud properties downwind of each region evolved quite differently. One trajectory carried particles through a cold-air outbreak, resulting in a decrease in accumulation mode particle concentration (−42 %) and cloud droplet concentrations, while the other remained outside of the cold-air outbreak and experienced an increase in accumulation mode particle concentrations (+62 %). The variable meteorological conditions between these two adjacent trajectories result from differences in the local sea surface temperature in the Labrador Current and surrounding waters, altering the stability of the marine atmospheric boundary layer. Further comparisons of historical satellite observations indicate that the observed pattern occurs annually in the region, making it an ideal location for future airborne Lagrangian studies tracking the evolution of aerosols and clouds over time under cold-air outbreak conditions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 2 ( 2021-01-20), p. 831-851
    Abstract: Abstract. Marine biogenic particle contributions to atmospheric aerosol concentrations are not well understood though they are important for determining cloud optical and cloud-nucleating properties. Here we examine the relationship between marine aerosol measurements (with satellites and model fields of ocean biology) and meteorological variables during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). NAAMES consisted of four field campaigns between November 2015 and April 2018 that aligned with the four major phases of the annual phytoplankton bloom cycle. The FLEXible PARTicle (FLEXPART) Lagrangian particle dispersion model is used to spatiotemporally connect these variables to ship-based aerosol and dimethyl sulfide (DMS) observations. We find that correlations between some aerosol measurements with satellite-measured and modeled variables increase with increasing trajectory length, indicating that biological and meteorological processes over the air mass history are influential for measured particle properties and that using only spatially coincident data would miss correlative connections that are lagged in time. In particular, the marine non-refractory organic aerosol mass correlates with modeled marine net primary production when weighted by 5 d air mass trajectory residence time (r=0.62). This result indicates that non-refractory organic aerosol mass is influenced by biogenic volatile organic compound (VOC) emissions that are typically produced through bacterial degradation of dissolved organic matter, zooplankton grazing on marine phytoplankton, and as a by-product of photosynthesis by phytoplankton stocks during advection into the region. This is further supported by the correlation of non-refractory organic mass with 2 d residence-time-weighted chlorophyll a (r=0.39), a proxy for phytoplankton abundance, and 5 d residence-time-weighted downward shortwave forcing (r=0.58), a requirement for photosynthesis. In contrast, DMS (formed through biological processes in the seawater) and primary marine aerosol (PMA) concentrations showed better correlations with explanatory biological and meteorological variables weighted with shorter air mass residence times, which reflects their localized origin as primary emissions. Aerosol submicron number and mass negatively correlate with sea surface wind speed. The negative correlation is attributed to enhanced PMA concentrations under higher wind speed conditions. We hypothesized that the elevated total particle surface area associated with high PMA concentrations leads to enhanced rates of condensation of VOC oxidation products onto PMA. Given the high deposition velocity of PMA relative to submicron aerosol, PMA can limit the accumulation of secondary aerosol mass. This study provides observational evidence for connections between marine aerosols and underlying ocean biology through complex secondary formation processes, emphasizing the need to consider air mass history in future analyses.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2020
    In:  Geophysical Research Letters Vol. 47, No. 15 ( 2020-08-16)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 47, No. 15 ( 2020-08-16)
    Abstract: We present the first solar‐induced chlorophyll fluorescence (SIF) observations from TROPOMI at red wavelengths Over land, red SIF resembles the spatial distribution of far‐red SIF Over the ocean, red SIF agrees with MODIS Fluorescence Line Height observations but provides better coverage
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  ISME Communications Vol. 1, No. 1 ( 2021-04-14)
    In: ISME Communications, Springer Science and Business Media LLC, Vol. 1, No. 1 ( 2021-04-14)
    Abstract: Phytoplankton community composition and succession affect aquatic food webs and biogeochemistry. Resource competition is commonly viewed as an important governing factor for community structuring and this perception is imbedded in modern ecosystem models. Quantitative consideration of the physical spacing between phytoplankton cells, however, suggests that direct competition for growth-limiting resources is uncommon. Here we describe how phytoplankton size distributions and temporal successions are compatible with a competition-neutral resource landscape. Consideration of phytoplankton-herbivore interactions with proportional feeding size ranges yields small-cell dominated size distributions consistent with observations for stable aquatic environments, whereas predator–prey temporal lags and blooming physiologies shift this distribution to larger mean cell sizes in temporally dynamic environments. We propose a conceptual mandala for understanding phytoplankton community composition where species successional series are initiated by environmental disturbance, guided by the magnitude of these disturbances and nutrient stoichiometry, and terminated with the return toward a ‘stable solution’. Our conceptual mandala provides a framework for interpreting and modeling the environmental structuring of natural phytoplankton populations.
    Type of Medium: Online Resource
    ISSN: 2730-6151
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3041786-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Elementa: Science of the Anthropocene, University of California Press, Vol. 10, No. 1 ( 2022-08-02)
    Abstract: Dissolved organic carbon (DOC) produced by primary production in the sunlit ocean can be physically transported to the mesopelagic zone. The majority of DOC exported to this zone is remineralized by heterotrophic microbes over a range of timescales. Capturing a deep convective mixing event is rare, as is observing how microbes respond in situ to the exported DOC. Here, we report ship and Argo float observations from hydrostation North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) 2 Station 4 (N2S4; 47.46°N, 38.72°W), a retentive anticyclonic eddy in the subtropical region of the western North Atlantic. Changes in biogeochemistry and bacterioplankton responses were tracked as the water column mixed to approximately 230 m and restratified over the subsequent 3 days. Over this period, rapid changes in bacterioplankton production (BP) and cell abundance were observed throughout the water column. BP increased by 91% in the euphotic zone (0–100 m) and 55% in the upper mesopelagic zone (100–200 m), corresponding to 33% and 103% increases in cell abundance, respectively. Within the upper mesopelagic, BP upon the occupation of N2S4 (20 ± 4.7 nmol C L–1 d–1) was significantly greater than the average upper mesopelagic BP rate (2.0 ± 1.6 nmol C L–1 h–1) at other stations that had been stratified for longer periods of time. BP continued to increase to 31 ± 3.0 nmol C L–1 d–1 over the 3-day occupation of N2S4. The rapid changes in BP in the upper mesopelagic did not coincide with rapid changes in community composition, but the taxa that increased in their relative contribution included those typically observed in the epipelagic zone. We interpret the subtle but significant community structure dynamics at N2S4 to reflect how injection of labile organic matter into the upper mesopelagic zone by physical mixing supports continued growth of euphotic zone-associated bacterioplankton lineages on a timescale of days.
    Type of Medium: Online Resource
    ISSN: 2325-1026
    Language: English
    Publisher: University of California Press
    Publication Date: 2022
    detail.hit.zdb_id: 2745461-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Annual Reviews ; 2024
    In:  Annual Review of Marine Science Vol. 16, No. 1 ( 2024-01-03)
    In: Annual Review of Marine Science, Annual Reviews, Vol. 16, No. 1 ( 2024-01-03)
    Abstract: The biodiversity of the plankton has been interpreted largely through the monocle of competition. The spatial distancing of phytoplankton in nature is so large that cell boundary layers rarely overlap, undermining opportunities for resource-based competitive exclusion. Neutral theory accounts for biodiversity patterns based purely on random birth, death, immigration, and speciation events and has commonly served as a null hypothesis in terrestrial ecology but has received comparatively little attention in aquatic ecology. This review summarizes basic elements of neutral theory and explores its stand-alone utility for understanding phytoplankton diversity. A theoretical framework is described entailing a very nonneutral trophic exclusion principle melded with the concept of ecologically defined neutral niches. This perspective permits all phytoplankton size classes to coexist at any limiting resource level, predicts greater diversity than anticipated from readily identifiable environmental niches but less diversity than expected from pure neutral theory, and functions effectively in populations of distantly space individuals. Expected final online publication date for the Annual Review of Marine Science, Volume 16 is January 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Type of Medium: Online Resource
    ISSN: 1941-1405 , 1941-0611
    URL: Issue
    Language: English
    Publisher: Annual Reviews
    Publication Date: 2024
    detail.hit.zdb_id: 2458404-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Ecological Monographs, Wiley, Vol. 91, No. 3 ( 2021-08)
    Abstract: Diatoms are the most recent major algal lineage added to the geological record, appearing more than 200 million years ago. They are stramenopile protists resulting from a secondary endosymbiotic event that yielded the only photosynthetic protistan lineage expressing external siliceous cell wall structures called frustules. Many diatoms also have large internal vacuoles, and a common assumption in the literature is that success of the diatoms is largely attributable to these two morphological inventions: the frustule for defense and vacuole for luxury nutrient uptake. Here, we revisit the evolution of these inventions, propose sequential steps in frustule development, replace luxury nutrient uptake with predator defense and buoyancy control as the driver of vacuole expansion, and suggest that perhaps the greatest significance of the frustule for diatom evolution is the secondary consequence of enhancing sexual reproduction. In this synthesis, we emphasize a distinction between the “general” success of diatoms and the success of “bloom‐forming” species, as the physiological and morphological drivers of these successes differ. Importantly, the bloom‐forming species are responsible for the major role of diatoms in aquatic biogeochemical cycles. The bloom‐forming habit we ascribe to specific physiological attributes that, at their core, revolve around influencing the balance between diatom growth and losses to predators. We propose that these physiological adaptations are linked to size‐dependent maximum division rates in bloom‐forming diatoms, because of size scaling of predator–prey interactions. The existence of these bloom‐forming species yields an apparent allometric relationship that has previously been interpreted in terms of nutrient acquisition. Our analysis yields insights into species successions during blooms, considers the fundamental benefit of blooming (and subsequent sinking) from a reproductive standpoint, and provides some reinterpretation of diatoms success over geologic time and in the modern ocean.
    Type of Medium: Online Resource
    ISSN: 0012-9615 , 1557-7015
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2010129-6
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...