GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    In: Climate of the Past, Copernicus GmbH, Vol. 17, No. 2 ( 2021-04-21), p. 869-885
    Abstract: Abstract. Due to different orbital configurations, high northern latitude summer insolation was higher during the Last Interglacial period (LIG; 129–116 thousand years before present, ka) than during the pre-industrial period (PI), while high southern latitude summer insolation was lower. The climatic response to these changes is studied here with focus on the Southern Hemisphere monsoons, by performing an equilibrium experiment of the LIG at 127 ka with the Australian Earth System Model, ACCESS-ESM1.5, as part of the Paleoclimate Model Intercomparison Project 4 (PMIP4). Simulated mean surface air temperature between 40 and 60∘ N over land during boreal summer is 6.5 ∘C higher at the LIG compared to PI, which leads to a northward shift of the Intertropical Convergence Zone (ITCZ) and a strengthening of the North African and Indian monsoons. Despite 0.4 ∘C cooler conditions in austral summer in the Southern Hemisphere (0–90∘ S), annual mean air temperatures are 1.2 ∘C higher at southern mid-latitudes to high latitudes (40–80∘ S). These differences in temperature are coincident with a large-scale reorganisation of the atmospheric circulation. The ITCZ shifts southward in the Atlantic and Indian sectors during the LIG austral summer compared to PI, leading to increased precipitation over the southern tropical oceans. However, weaker Southern Hemisphere insolation during LIG austral summer induces a significant cooling over land, which in turn weakens the land–sea temperature contrast, leading to an overall reduction (−20 %) in monsoonal precipitation over the Southern Hemisphere's continental regions compared to PI. The intensity and areal extent of the Australian, South American and South African monsoons are consistently reduced in LIG. This is associated with greater pressure and subsidence over land due to a strengthening of the Southern Hemisphere Hadley cell during austral summer.
    Type of Medium: Online Resource
    ISSN: 1814-9332
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2217985-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Nature Reviews Earth & Environment, Springer Science and Business Media LLC, Vol. 2, No. 9 ( 2021-08-17), p. 628-644
    Type of Medium: Online Resource
    ISSN: 2662-138X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 3005281-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Nature Reviews Earth & Environment, Springer Science and Business Media LLC, Vol. 1, No. 4 ( 2020-04-10), p. 215-231
    Type of Medium: Online Resource
    ISSN: 2662-138X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 3005281-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    In: Nature Food, Springer Science and Business Media LLC, Vol. 3, No. 10 ( 2022-10-13), p. 862-870
    Type of Medium: Online Resource
    ISSN: 2662-1355
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 3002034-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Journal of Climate Vol. 35, No. 16 ( 2022-08-15), p. 5307-5320
    In: Journal of Climate, American Meteorological Society, Vol. 35, No. 16 ( 2022-08-15), p. 5307-5320
    Abstract: Atlantic meridional overturning circulation (AMOC) collapses have punctuated Earth’s climate in the past, and future projections suggest a weakening and potential collapse in response to global warming and high-latitude ocean freshening. Among its most important teleconnections, the AMOC has been shown to influence El Niño–Southern Oscillation (ENSO), although there is no clear consensus on the tendency of this influence or the mechanisms at play. In this study, we investigate the effect of an AMOC collapse on ENSO by adding freshwater in the North Atlantic in a global climate model. The tropical Pacific mean-state changes caused by the AMOC collapse are found to alter the governing ENSO feedbacks, damping the growth rate of ENSO. As a result, ENSO variability is found to decrease by ∼30% due to weaker air–sea coupling associated with a cooler tropical Pacific and an intensified Walker circulation. The decreased ENSO variability manifests in ∼95% less frequent extreme El Niño events and a shift toward more prevalent central Pacific El Niño than eastern Pacific El Niño events, marked by a reduced ENSO nonlinearity and asymmetry. These results provide mechanistic insights into the possible behavior of past and future ENSO in a scenario of a much weakened or collapsed AMOC. Significance Statement The Atlantic meridional overturning circulation (AMOC) has collapsed in the past and a future collapse due to greenhouse warming is a plausible scenario. An AMOC shutdown would have major ramifications for global climate, with extensive impacts on climate phenomena such as El Niño–Southern Oscillation (ENSO), which is the strongest source of year-to-year climate variability on the planet. Using numerical simulations, we show that an AMOC shutdown leads to weaker ENSO variability, manifesting in 95% reduction in extreme El Niño events, and a shift of the ENSO pattern toward the central Pacific. This study sheds light on the mechanisms behind these changes, with implications for interpreting past and future ENSO variability.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Climate Change Vol. 12, No. 6 ( 2022-06), p. 558-565
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 12, No. 6 ( 2022-06), p. 558-565
    Type of Medium: Online Resource
    ISSN: 1758-678X , 1758-6798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2603450-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Online Resource
    Online Resource
    American Meteorological Society ; 2024
    In:  Journal of Climate Vol. 37, No. 5 ( 2024-03-01), p. 1759-1775
    In: Journal of Climate, American Meteorological Society, Vol. 37, No. 5 ( 2024-03-01), p. 1759-1775
    Abstract: Large-scale modes of atmospheric variability in the southern midlatitudes can influence Antarctic sea ice concentrations (SIC) via diverse processes. For instance, variability in both the Southern Annular Mode (SAM) and zonal wave 3 (ZW3) have been linked to the abrupt 2015/16 sea ice decline. While SIC responses to each of SAM and ZW3 have been examined previously, their interaction and synchronous impact on Antarctic sea ice has not. Here, we investigate SAM/ZW3 interactions and their associated combined impacts on Antarctic sea ice using a 1200-yr simulation from a state-of-the-art climate model. Our results suggest that zonal wind anomalies associated with SAM drive SIC anomalies in the marginal ice-zone via advection of ice normal to the ice edge and Ekman drift. In contrast, meridional wind anomalies associated with ZW3 can have opposing dynamic and thermodynamic effects on SIC. Both SAM- and ZW3-related SIC anomalies propagate eastward, likely by the Antarctic Circumpolar Current. The interaction of SAM and ZW3 leads to interesting regional SIC responses. During negative SAM, ZW3-associated meridional wind anomalies across western Antarctica are closer to the ice edge and have a stronger impact on sea ice overall. ZW3 phase affects meridional wind anomalies across the whole ice edge, whereas it affects SIC anomalies mainly over western Antarctica. In parts of eastern Antarctica, SIC anomalies are less sensitive to ZW3 phase, but are sensitive to SAM, particularly in locations where the ice edge has a prominent angle relative to the SAM-related zonal wind anomalies. Significance Statement The Southern Annular Mode (SAM) and zonal wave 3 (ZW3) are large-scale atmospheric circulation patterns affecting midlatitude east–west and north–south winds, respectively, over the Southern Ocean. Variations in winds can affect sea ice formation, which can feed back to influence Southern Hemisphere climate. We examine how variations in SAM and ZW3 affect Antarctic sea ice due to a combination of wind- and ocean-driven ice movement and sea ice growth or melting. Regional variations in ice concentrations are due both to alternating north–south ZW3 winds and to the interaction of SAM-related east–west winds with the ice edge. SAM and ZW3 can also interact, leading to stronger north–south wind and sea ice responses over western Antarctica when SAM-related midlatitude winds weaken.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2024
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Climate Dynamics Vol. 55, No. 7-8 ( 2020-10), p. 2053-2073
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 55, No. 7-8 ( 2020-10), p. 2053-2073
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Climate Dynamics Vol. 55, No. 11-12 ( 2020-12), p. 3197-3211
    In: Climate Dynamics, Springer Science and Business Media LLC, Vol. 55, No. 11-12 ( 2020-12), p. 3197-3211
    Abstract: South-Eastern Brazil experienced a devastating drought associated with significant agricultural losses in austral summer 2014. The drought was linked to the development of a quasi-stationary anticyclone in the South Atlantic in early 2014 that affected local precipitation patterns over South-East Brazil. Previous studies have suggested that the unusual blocking was triggered by tropical Pacific sea surface temperature (SST) anomalies and, more recently, by convection over the Indian Ocean related to the Madden–Julian Oscillation. Further investigation of the proposed teleconnections appears crucial for anticipating future economic impacts. In this study, we use numerical experiments with an idealized atmospheric general circulation model forced with the observed 2013/2014 SST anomalies in different ocean basins to understand the dominant mechanism that initiated the 2014 South Atlantic anticyclonic anomaly. We show that a forcing with global 2013/2014 SST anomalies enhances the chance for the occurrence of positive geopotential height anomalies in the South Atlantic. However, further sensitivity experiments with SST forcings in separate ocean basins suggest that neither the Indian Ocean nor tropical Pacific SST anomalies alone have contributed significantly to the anomalous atmospheric circulation that led to the 2014 South-East Brazil drought. The model study rather points to an important role of remote forcing from the South Pacific, local South Atlantic SSTs, and internal atmospheric variability in driving the persistent blocking over the South Atlantic.
    Type of Medium: Online Resource
    ISSN: 0930-7575 , 1432-0894
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 382992-3
    detail.hit.zdb_id: 1471747-5
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Scientific Reports Vol. 11, No. 1 ( 2021-05-05)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-05-05)
    Abstract: Western Boundary Currents (WBCs) are important for the oceanic transport of heat, dissolved gases and nutrients. They can affect regional climate and strongly influence the dispersion and distribution of marine species. Using state-of-the-art climate models from the latest and previous Climate Model Intercomparison Projects , we evaluate upper ocean circulation and examine future projections, focusing on subtropical and low-latitude WBCs. Despite their coarse resolution, climate models successfully reproduce most large-scale circulation features with ensemble mean transports typically within the range of observational uncertainty, although there is often a large spread across the models and some currents are systematically too strong or weak. Despite considerable differences in model structure, resolution and parameterisations, many currents show highly consistent projected changes across the models. For example, the East Australian Current, Brazil Current and Agulhas Current extensions are projected to intensify, while the Gulf Stream, Indonesian Throughflow and Agulhas Current are projected to weaken. Intermodel differences in most future circulation changes can be explained in part by projected changes in the large-scale surface winds. In moving to the latest model generation, despite structural model advancements, we find little systematic improvement in the simulation of ocean transports nor major differences in the projected changes. 
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...