GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Elsevier BV ; 2020
    In:  Journal of Experimental Marine Biology and Ecology Vol. 529 ( 2020-08), p. 151398-
    In: Journal of Experimental Marine Biology and Ecology, Elsevier BV, Vol. 529 ( 2020-08), p. 151398-
    Type of Medium: Online Resource
    ISSN: 0022-0981
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 410283-6
    detail.hit.zdb_id: 1483103-X
    SSG: 12
    SSG: 7,20
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Atmospheric and Oceanic Technology Vol. 37, No. 3 ( 2020-03), p. 467-487
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 37, No. 3 ( 2020-03), p. 467-487
    Abstract: Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Bulletin of the American Meteorological Society, American Meteorological Society, ( 2023-07-26)
    Abstract: On 30 September 2021, a saildrone uncrewed surface vehicle (USV) was steered into Category 4 Hurricane Sam, the most intense storm of the 2021 Atlantic hurricane season. It measured significant wave heights up to 14 m (maximum wave height 27 m) and near-surface winds exceeding 55 m s −1 . This was the first time in more than seven decades of hurricane observations that in real time a USV transmitted scientific data, images, and videos of the dynamic ocean surface near a hurricane’s eyewall. The saildrone was part of a five-saildrone deployment of the NOAA 2021 Atlantic Hurricane Observations Mission. These saildrones observed the atmospheric and oceanic near-surface conditions of five other tropical storms, of which two became hurricanes. Such observations inside tropical cyclones help to advance the understanding and prediction of hurricanes, with the ultimate goal of saving lives and protecting property. The 2021 deployment pioneered a new practice of coordinating measurements by saildrones, underwater gliders, and airborne dropsondes to make simultaneous and near-collocated observations of the air-sea interface, the ocean immediately below, and the atmosphere immediately above. This experimental deployment opened the door to a new era of using remotely piloted uncrewed systems to observe one of the most extreme phenomena on Earth in a way previously impossible. This article provides an overview of this saildrone hurricane observations mission, describes how the saildrones were coordinated with other observing platforms, presents preliminary scientific results from these observations to demonstrate their potential utility and motivate further data analysis, and offers a vision of future hurricane observations using combined uncrewed platforms.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Applied Ocean Research, Elsevier BV, Vol. 148 ( 2024-07), p. 103997-
    Type of Medium: Online Resource
    ISSN: 0141-1187
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1495994-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Autophagy, Informa UK Limited, Vol. 17, No. 1 ( 2021-01-02), p. 1-382
    Type of Medium: Online Resource
    ISSN: 1554-8627 , 1554-8635
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2021
    detail.hit.zdb_id: 2262043-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S207-S270
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S207-S270
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Bulletin of the American Meteorological Society Vol. 103, No. 8 ( 2022-08), p. S193-S256
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 8 ( 2022-08), p. S193-S256
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Bulletin of the American Meteorological Society Vol. 102, No. 8 ( 2021-08-01), p. S199-S262
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 102, No. 8 ( 2021-08-01), p. S199-S262
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Bulletin of the American Meteorological Society Vol. 101, No. 8 ( 2020-08-01), p. S185-S238
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 101, No. 8 ( 2020-08-01), p. S185-S238
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...