GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Earth System Dynamics, Copernicus GmbH, Vol. 13, No. 1 ( 2022-03-15), p. 457-593
    Abstract: Abstract. Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Animal Ecology, Wiley, Vol. 90, No. 5 ( 2021-05), p. 1205-1216
    Abstract: Studying how food web structure and function vary through time represents an opportunity to better comprehend and anticipate ecosystem changes. Yet, temporal studies of highly resolved food web structure are scarce. With few exceptions, most temporal food web studies are either too simplified, preventing a detailed assessment of structural properties or binary, missing the temporal dynamics of energy fluxes among species. Using long‐term, multi‐trophic biomass data coupled with highly resolved information on species feeding relationships, we analysed food web dynamics in the Gulf of Riga (Baltic Sea) over more than three decades (1981–2014). We combined unweighted (topology‐based) and weighted (biomass‐ and flux‐based) food web approaches, first, to unravel how distinct descriptors can highlight differences (or similarities) in food web dynamics through time, and second, to compare temporal dynamics of food web structure and function. We find that food web descriptors vary substantially and distinctively through time, likely reflecting different underlying ecosystem processes. While node‐ and link‐weighted metrics reflect changes related to alterations in species dominance and fluxes, unweighted metrics are more sensitive to changes in species and link richness. Comparing unweighted, topology‐based metrics and flux‐based functions further indicates that temporal changes in functions cannot be predicted using unweighted food web structure. Rather, information on species population dynamics and weighted, flux‐based networks should be included to better comprehend temporal food web dynamics. By integrating unweighted, node‐ and link‐weighted metrics, we here demonstrate how different approaches can be used to compare food web structure and function, and identify complementary patterns of change in temporal food web dynamics, which enables a more complete understanding of the ecological processes at play in ecosystems undergoing change.
    Type of Medium: Online Resource
    ISSN: 0021-8790 , 1365-2656
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2006616-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 34 ( 2020-08-25), p. 20363-20371
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 34 ( 2020-08-25), p. 20363-20371
    Abstract: The ocean is a lifeline for human existence, but current practices risk severely undermining ocean sustainability. Present and future social−ecological challenges necessitate the maintenance and development of knowledge and action by stimulating collaboration among scientists and between science, policy, and practice. Here we explore not only how such collaborations have developed in the Nordic countries and adjacent seas but also how knowledge from these regions contributes to an understanding of how to obtain a sustainable ocean. Our collective experience may be summarized in three points: 1) In the absence of long-term observations, decision-making is subject to high risk arising from natural variability; 2) in the absence of established scientific organizations, advice to stakeholders often relies on a few advisors, making them prone to biased perceptions; and 3) in the absence of trust between policy makers and the science community, attuning to a changing ocean will be subject to arbitrary decision-making with unforeseen and negative ramifications. Underpinning these observations, we show that collaboration across scientific disciplines and stakeholders and between nations is a necessary condition for appropriate actions.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Journal of Fish Biology Vol. 96, No. 3 ( 2020-03), p. 669-680
    In: Journal of Fish Biology, Wiley, Vol. 96, No. 3 ( 2020-03), p. 669-680
    Abstract: The aim of this study was to examine how the presence of a predator and an interspecific competitor influence the habitat use of adult perch ( Perca fluviatilis ; size: 15.1 ± 0.5 cm) when given the choice between two adjacent habitats. By conducting aquarium experiments, the habitat occupancy of P. fluviatilis was documented in the presence and absence of a predator (pike Esox lucius ; size: 25.4 ± 2.1 cm) and a potential competitor (ruffe Gymnocephalus cernuus ; size: 14.1 ± 0.3 cm) fish species. Two P. fluviatilis individuals generally shared the same habitat. In the presence of a conspecific, P. fluviatilis favoured the structurally more‐complex, artificial macrophyte habitat over the less‐structured rock and sand habitat, which in turn were used equally. In the predator‐ and competitor treatments, P. fluviatilis seemed to adapt their habitat use to the habitat occupancy of E. lucius and G. cernuus in the Macrophyte vs. Rock and, in the predator treatment, also in the Macrophyte vs. Sand habitat combination, by increasingly occupying a habitat that was used less by the predator or competitor species, respectively. This behaviour suggests that P. fluviatilis tried to avoid the other fish species by choosing a, in some cases less preferred, predator‐ or competitor‐free habitat. This study emphasizes the importance of biological interactions illustrated by the potential of predation risk and competition to structure fish communities by influencing habitat use at small spatial scales.
    Type of Medium: Online Resource
    ISSN: 0022-1112 , 1095-8649
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 410564-3
    detail.hit.zdb_id: 1471958-7
    SSG: 21,3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Journal of Experimental Marine Biology and Ecology Vol. 541 ( 2021-08), p. 151571-
    In: Journal of Experimental Marine Biology and Ecology, Elsevier BV, Vol. 541 ( 2021-08), p. 151571-
    Type of Medium: Online Resource
    ISSN: 0022-0981
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 410283-6
    detail.hit.zdb_id: 1483103-X
    SSG: 12
    SSG: 7,20
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Earth System Dynamics Vol. 13, No. 2 ( 2022-04-11), p. 711-747
    In: Earth System Dynamics, Copernicus GmbH, Vol. 13, No. 2 ( 2022-04-11), p. 711-747
    Abstract: Abstract. Climate change has multiple effects on Baltic Sea species, communities and ecosystem functioning through changes in physical and biogeochemical environmental characteristics of the sea. Associated indirect and secondary effects on species interactions, trophic dynamics and ecosystem function are expected to be significant. We review studies investigating species-, population- and ecosystem-level effects of abiotic factors that may change due to global climate change, such as temperature, salinity, oxygen, pH, nutrient levels, and the more indirect biogeochemical and food web processes, primarily based on peer-reviewed literature published since 2010. For phytoplankton, clear symptoms of climate change, such as prolongation of the growing season, are evident and can be explained by the warming, but otherwise climate effects vary from species to species and area to area. Several modelling studies project a decrease of phytoplankton bloom in spring and an increase in cyanobacteria blooms in summer. The associated increase in N:P ratio may contribute to maintaining the “vicious circle of eutrophication”. However, uncertainties remain because some field studies claim that cyanobacteria have not increased and some experimental studies show that responses of cyanobacteria to temperature, salinity and pH vary from species to species. An increase of riverine dissolved organic matter (DOM) may also decrease primary production, but the relative importance of this process in different sea areas is not well known. Bacteria growth is favoured by increasing temperature and DOM, but complex effects in the microbial food web are probable. Warming of seawater in spring also speeds up zooplankton growth and shortens the time lag between phytoplankton and zooplankton peaks, which may lead to decreasing of phytoplankton in spring. In summer, a shift towards smaller-sized zooplankton and a decline of marine copepod species has been projected. In deep benthic communities, continued eutrophication promotes high sedimentation and maintains good food conditions for zoobenthos. If nutrient abatement proceeds, improving oxygen conditions will first increase zoobenthos biomass, but the subsequent decrease of sedimenting matter will disrupt the pelagic–benthic coupling and lead to a decreased zoobenthos biomass. In the shallower photic systems, heatwaves may produce eutrophication-like effects, e.g. overgrowth of bladderwrack by epiphytes, due to a trophic cascade. If salinity also declines, marine species such as bladderwrack, eelgrass and blue mussel may decline. Freshwater vascular plants will be favoured but they cannot replace macroalgae on rocky substrates. Consequently invertebrates and fish benefiting from macroalgal belts may also suffer. Climate-induced changes in the environment also favour establishment of non-indigenous species, potentially affecting food web dynamics in the Baltic Sea. As for fish, salinity decline and continuing of hypoxia is projected to keep cod stocks low, whereas the increasing temperature has been projected to favour sprat and certain coastal fish. Regime shifts and cascading effects have been observed in both pelagic and benthic systems as a result of several climatic and environmental effects acting synergistically. Knowledge gaps include uncertainties in projecting the future salinity level, as well as stratification and potential rate of internal loading, under different climate forcings. This weakens our ability to project how pelagic productivity, fish populations and macroalgal communities may change in the future. The 3D ecosystem models, food web models and 2D species distribution models would benefit from integration, but progress is slowed down by scale problems and inability of models to consider the complex interactions between species. Experimental work should be better integrated into empirical and modelling studies of food web dynamics to get a more comprehensive view of the responses of the pelagic and benthic systems to climate change, from bacteria to fish. In addition, to better understand the effects of climate change on the biodiversity of the Baltic Sea, more emphasis should be placed on studies of shallow photic environments. The fate of the Baltic Sea ecosystem will depend on various intertwined environmental factors and on development of the society. Climate change will probably delay the effects of nutrient abatement and tend to keep the ecosystem in its “novel” state. However, several modelling studies conclude that nutrient reductions will be a stronger driver for ecosystem functioning of the Baltic Sea than climate change. Such studies highlight the importance of studying the Baltic Sea as an interlinked socio-ecological system.
    Type of Medium: Online Resource
    ISSN: 2190-4987
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2578793-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Ambio, Springer Science and Business Media LLC, Vol. 51, No. 7 ( 2022-07), p. 1687-1697
    Abstract: Ecosystem-based management requires understanding of food webs. Consequently, assessment of food web status is mandatory according to the European Union’s Marine Strategy Framework Directive (MSFD) for EU Member States. However, how to best monitor and assess food webs in practise has proven a challenging question. Here, we review and assess the current status of food web indicators and food web models, and discuss whether the models can help addressing current shortcomings of indicator-based food web assessments, using the Baltic Sea as an example region. We show that although the MSFD food web assessment was designed to use food web indicators alone, they are currently poorly fit for the purpose, because they lack interconnectivity of trophic guilds. We then argue that the multiple food web models published for this region have a high potential to provide additional coherence to the definition of good environmental status, the evaluation of uncertainties, and estimates for unsampled indicator values, but we also identify current limitations that stand in the way of more formal implementation of this approach. We close with a discussion of which current models have the best capacity for this purpose in the Baltic Sea, and of the way forward towards the combination of measurable indicators and modelling approaches in food web assessments.
    Type of Medium: Online Resource
    ISSN: 0044-7447 , 1654-7209
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120759-3
    detail.hit.zdb_id: 2040524-8
    SSG: 23
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Ambio, Springer Science and Business Media LLC, Vol. 49, No. 6 ( 2020-06), p. 1194-1210
    Abstract: The coastal zone of the Baltic Sea is diverse with strong regional differences in the physico-chemical setting. This diversity is also reflected in the importance of different biogeochemical processes altering nutrient and organic matter fluxes on the passage from land to sea. This review investigates the most important processes for removal of nutrients and organic matter, and the factors that regulate the efficiency of the coastal filter. Nitrogen removal through denitrification is high in lagoons receiving large inputs of nitrate and organic matter. Phosphorus burial is high in archipelagos with substantial sedimentation, but the stability of different burial forms varies across the Baltic Sea. Organic matter processes are tightly linked to the nitrogen and phosphorus cycles. Moreover, these processes are strongly modulated depending on composition of vegetation and fauna. Managing coastal ecosystems to improve the effectiveness of the coastal filter can reduce eutrophication in the open Baltic Sea.
    Type of Medium: Online Resource
    ISSN: 0044-7447 , 1654-7209
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 120759-3
    detail.hit.zdb_id: 2040524-8
    SSG: 23
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Ambio Vol. 50, No. 4 ( 2021-04), p. 753-758
    In: Ambio, Springer Science and Business Media LLC, Vol. 50, No. 4 ( 2021-04), p. 753-758
    Abstract: Eutrophication, i.e. nutrient over-enrichment, has been a topic for academic and societal debate for the past five decades both on land and in aquatic systems fed by nutrients as diffuse loading from agricultural lands and as wastewater from industrial and municipal point-sources. The use of nutrients (primarily nitrogen and phosphorus) in excess became a problem with the onset of large-scale production and use of artificial fertilizers after World War II, and the effects on the aquatic environment became obvious some two to three decades later. In this Perspective, four seminal papers on eutrophication are discussed in light of the current knowledge of the problem, including future perspectives and outlooks in the light of global climate change and the demand for science-based holistic ecosystem-level policies and management options.
    Type of Medium: Online Resource
    ISSN: 0044-7447 , 1654-7209
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120759-3
    detail.hit.zdb_id: 2040524-8
    SSG: 23
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Marine Biodiversity Vol. 50, No. 5 ( 2020-10)
    In: Marine Biodiversity, Springer Science and Business Media LLC, Vol. 50, No. 5 ( 2020-10)
    Abstract: We examined small-scale distribution and feeding ecology of a non-native fish species, round goby ( Neogobius melanostomus (Pallas, 1814)), in different habitats of a coastal lagoon situated in the south-western Baltic Sea. First observations of round goby in this lagoon were reported in 2011, 3 years before the current study was conducted, and information on this species’ basic ecology in different habitats is limited. We found that mainly juvenile round gobies are non-randomly distributed between habitats and that abundances potentially correlate positively with vegetation density and thus structural complexity of the environment. Abundances were highest in shallower, more densely vegetated habitats indicating that these areas might act as a refuge for small round gobies by possibly offering decreased predation risk and better feeding resources. Round goby diet composition was distinct for several length classes suggesting an ontogenetic diet shift concerning crustacean prey taxa between small (≤ 50 mm total length, feeding mainly on zooplankton) and medium individuals (51–100 mm, feeding mainly on benthic crustaceans) and another diet shift of increasing molluscivory with increasing body size across all length classes. Differences in round goby diet between habitats within the smallest length class might potentially be related to prey availability in the environment, which would point to an opportunistic feeding strategy. Here, we offer new insights into the basic ecology of round goby in littoral habitats, providing a better understanding of the ecological role of this invasive species in its non-native range, which might help to assess potential consequences for native fauna and ecosystems.
    Type of Medium: Online Resource
    ISSN: 1867-1616 , 1867-1624
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2478073-X
    detail.hit.zdb_id: 2493558-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...