GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
  • Natural Sciences  (1)
Material
Language
Years
  • 2020-2024  (1)
Year
Subjects(RVK)
RVK
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  Nature Vol. 603, No. 7899 ( 2022-03-03), p. 159-165
    In: Nature, Springer Science and Business Media LLC, Vol. 603, No. 7899 ( 2022-03-03), p. 159-165
    Abstract: Metformin, the most prescribed antidiabetic medicine, has shown other benefits such as anti-ageing and anticancer effects 1–4 . For clinical doses of metformin, AMP-activated protein kinase (AMPK) has a major role in its mechanism of action 4,5 ; however, the direct molecular target of metformin remains unknown. Here we show that clinically relevant concentrations of metformin inhibit the lysosomal proton pump v-ATPase, which is a central node for AMPK activation following glucose starvation 6 . We synthesize a photoactive metformin probe and identify PEN2, a subunit of γ-secretase 7 , as a binding partner of metformin with a dissociation constant at micromolar levels. Metformin-bound PEN2 forms a complex with ATP6AP1, a subunit of the v-ATPase 8 , which leads to the inhibition of v-ATPase and the activation of AMPK without effects on cellular AMP levels. Knockout of PEN2 or re-introduction of a PEN2 mutant that does not bind ATP6AP1 blunts AMPK activation. In vivo, liver-specific knockout of Pen2 abolishes metformin-mediated reduction of hepatic fat content, whereas intestine-specific knockout of Pen2 impairs its glucose-lowering effects. Furthermore, knockdown of pen-2 in Caenorhabditis elegans abrogates metformin-induced extension of lifespan. Together, these findings reveal that metformin binds PEN2 and initiates a signalling route that intersects, through ATP6AP1, the lysosomal glucose-sensing pathway for AMPK activation. This ensures that metformin exerts its therapeutic benefits in patients without substantial adverse effects.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...