GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 137, No. 1 ( 2022-07-01), p. 42-50
    Abstract: Molecular profiles, such as isocitrate dehydrogenase (IDH) mutation and O 6 -methylguanine-DNA methyltransferase (MGMT) methylation status, have important prognostic roles for glioblastoma patients. The authors studied the efficacy and safety of stereotactic radiosurgery (SRS) for glioblastoma patients with consideration of molecular tumor profiles. METHODS For this retrospective observational multiinstitutional study, the authors pooled consecutive patients who were treated using SRS for glioblastoma at eight institutions participating in the International Radiosurgery Research Foundation. They evaluated predictors of overall and progression-free survival with consideration of IDH mutation and MGMT methylation status. RESULTS Ninety-six patients (median age 56 years) underwent SRS (median dose 15 Gy and median treatment volume 5.53 cm 3 ) at 147 tumor sites (range 1 to 7). The majority of patients underwent prior fractionated radiation therapy (92%) and temozolomide chemotherapy (98%). Most patients were treated at recurrence (85%), and boost SRS was used for 12% of patients. The majority of patients harbored IDH wild-type (82%) and MGMT-methylated (62%) tumors. Molecular data were unavailable for 33 patients. Median survival durations after SRS were similar between patients harboring IDH wild-type tumors and those with IDH mutant tumors (9.0 months vs 11 months, respectively), as well as between those with MGMT-methylated tumors and those with MGMT-unmethylated tumors (9.8 vs. 9.0 months, respectively). Prescription dose 〉 15 Gy (OR 0.367, 95% CI 0.190–0.709, p = 0.003) and treatment volume 〉 5 cm 3 (OR 1.036, 95% CI 1.007–1.065, p = 0.014) predicted overall survival after controlling for age and IDH status. Treatment volume 〉 5 cm 3 (OR 2.215, 95% CI 1.159–4.234, p = 0.02) and absence of gross-total resection (OR 0.403, 95% CI 0.208–0.781, p = 0.007) were associated with inferior local control of SRS-treated lesions in multivariate models. Nine patients experienced adverse radiation events after SRS, and 7 patients developed radiation necrosis at 59 to 395 days after SRS. CONCLUSIONS Post-SRS survival was similar as a function of IDH mutation and MGMT promoter methylation status, suggesting that molecular profiles of glioblastoma should be considered when selecting candidates for SRS. SRS prescription dose 〉 15 Gy and treatment volume ≤ 5 cm 3 were associated with longer survival, independent of age and IDH status. Prior gross-total resection and smaller treatment volume were associated with superior local control.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2022
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 4 ( 2022-02-15), p. 594-602
    Abstract: Therapeutic advances for glioblastoma have been minimal over the past 2 decades. In light of the multitude of recent phase III trials that have failed to meet their primary endpoints following promising preclinical and early-phase programs, a Society for Neuro-Oncology Think Tank was held in November 2020 to prioritize areas for improvement in the conduct of glioblastoma clinical trials. Here, we review the literature, identify challenges related to clinical trial eligibility criteria and trial design in glioblastoma, and provide recommendations from the Think Tank. In addition, we provide a data-driven context with which to frame this discussion by analyzing key study design features of adult glioblastoma clinical trials listed on ClinicalTrials.gov as “recruiting” or “not yet recruiting” as of February 2021.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 53, No. 7 ( 2021-07), p. 1088-1096
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 26, No. 6 ( 2020-03-15), p. 1395-1407
    Abstract: Exploration of novel strategies to extend the benefit of PARP inhibitors beyond BRCA-mutant cancers is of great interest in personalized medicine. Here, we identified EGFR amplification as a potential biomarker to predict sensitivity to PARP inhibition, providing selection for the glioblastoma (GBM) patient population who will benefit from PARP inhibition therapy. Experimental Design: Selective sensitivity to the PARP inhibitor talazoparib was screened and validated in two sets [test set (n = 14) and validation set (n = 13)] of well-characterized patient-derived glioma sphere-forming cells (GSC). FISH was used to detect EGFR copy number. DNA damage response following talazoparib treatment was evaluated by γH2AX and 53BP1 staining and neutral comet assay. PARP–DNA trapping was analyzed by subcellular fractionation. The selective monotherapy of talazoparib was confirmed using in vivo glioma models. Results: EGFR-amplified GSCs showed remarkable sensitivity to talazoparib treatment. EGFR amplification was associated with increased reactive oxygen species (ROS) and subsequent increased basal expression of DNA-repair pathways to counterelevated oxidative stress, and thus rendered vulnerability to PARP inhibition. Following talazoparib treatment, EGFR-amplified GSCs showed enhanced DNA damage and increased PARP–DNA trapping, which augmented the cytotoxicity. EGFR amplification–associated selective sensitivity was further supported by the in vivo experimental results showing that talazoparib significantly suppressed tumor growth in EGFR-amplified subcutaneous models but not in nonamplified models. Conclusions: EGFR-amplified cells are highly sensitive to talazoparib. Our data provide insight into the potential of using EGFR amplification as a selection biomarker for the development of personalized therapy.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 26, No. 5 ( 2020-03-01), p. 1094-1104
    Abstract: Glioblastoma is the most frequent and lethal primary brain tumor. Development of novel therapies relies on the availability of relevant preclinical models. We have established a panel of 96 glioblastoma patient-derived xenografts (PDX) and undertaken its genomic and phenotypic characterization. Experimental Design: PDXs were established from glioblastoma, IDH-wildtype (n = 93), glioblastoma, IDH-mutant (n = 2), diffuse midline glioma, H3 K27M-mutant (n = 1), and both primary (n = 60) and recurrent (n = 34) tumors. Tumor growth rates, histopathology, and treatment response were characterized. Integrated molecular profiling was performed by whole-exome sequencing (WES, n = 83), RNA-sequencing (n = 68), and genome-wide methylation profiling (n = 76). WES data from 24 patient tumors was compared with derivative models. Results: PDXs recapitulate many key phenotypic and molecular features of patient tumors. Orthotopic PDXs show characteristic tumor morphology and invasion patterns, but largely lack microvascular proliferation and necrosis. PDXs capture common and rare molecular drivers, including alterations of TERT, EGFR, PTEN, TP53, BRAF, and IDH1, most at frequencies comparable with human glioblastoma. However, PDGFRA amplification was absent. RNA-sequencing and genome-wide methylation profiling demonstrated broad representation of glioblastoma molecular subtypes. MGMT promoter methylation correlated with increased survival in response to temozolomide. WES of 24 matched patient tumors showed preservation of most genetic driver alterations, including EGFR amplification. However, in four patient–PDX pairs, driver alterations were gained or lost on engraftment, consistent with clonal selection. Conclusions: Our PDX panel captures the molecular heterogeneity of glioblastoma and recapitulates many salient genetic and phenotypic features. All models and genomic data are openly available to investigators.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2021
    In:  Cancer Research Vol. 81, No. 13_Supplement ( 2021-07-01), p. 2068-2068
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 2068-2068
    Abstract: Diffuse gliomas are highly aggressive brain tumors that invariably relapse despite treatment with chemo- and radiotherapy. Treatment with alkylating chemotherapy can drive tumors to develop a hypermutator phenotype. In contrast, the genomic effects of radiation therapy (RT) remain unknown. We analyzed the mutational spectra following treatment with ionizing radiation in sequencing data from 190 paired primary-recurrent gliomas from the Glioma Longitudinal Analysis (GLASS) dataset and 2116 post-treatment metastatic tumors from the Hartwig Medical Foundation. We identified a significant increase in the burden of small deletions following radiation therapy that was independent of other factors and was significantly associated with the clinically applied RT-dosage in Gy (P = 1e-02, multivariable log-linear regression). These novel deletions demonstrated distinct characteristics when compared to pre-existing deletions present prior to RT-treatment and deletions in RT-untreated tumors. Radiation therapy-acquired deletions were characterized by a larger deletion size (GLASS and metastatic cohort, P = 1.2e-02 and P = 8e-11, respectively; Mann-Whitney U test), an increased distance to repetitive DNA elements (P & lt; 2.2e-16, Kolmogorov-Smirnov test) and a reduction in microhomology at breakpoints (P = 3.2e-02, paired Wilcoxon signed-rank test). These observations suggested that canonical non-homologous end joining (c-NHEJ) was the preferred pathway for DNA double strand break repair of RT-induced DNA damage. Furthermore, radiotherapy resulted in frequent chromosomal deletions and significantly increased frequencies of CDKN2A homozygous deletions. Finally, a high burden of RT-associated deletions was associated with worse clinical outcomes (GLASS and metastatic cohort, P & lt; 1e-04 and P = 2.6e-02, respectively; Wald test). Our results collectively suggest that effective repair of RT-induced DNA damage is detrimental to patient survival and that inhibiting c-NHEJ may be a viable strategy for improving the cancer-killing effect of radiotherapy. Taken together, the identified genomic scars as a result of radiation therapy reflect a more aggressive tumor with increased levels of resistance to follow up treatments. Citation Format: Emre Kocakavuk, Kevin J. Anderson, Kevin C. Johnson, Frederick S. Varn, Samirkumar B. Amin, Erik P. Sulman, Floris P. Barthel, Roel G. Verhaak. Radiotherapy is associated with a deletion signature that contributes to poor cancer patient outcomes [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 2068.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 26, No. 18 ( 2020-09-15), p. 4983-4994
    Abstract: Patients with central nervous system (CNS) tumors are typically treated with radiotherapy, but this is not curative and results in the upregulation of phosphorylated STAT3 (p-STAT3), which drives invasion, angiogenesis, and immune suppression. Therefore, we investigated the combined effect of an inhibitor of STAT3 and whole-brain radiotherapy (WBRT) in a murine model of glioma. Experimental Design: C57BL/6 mice underwent intracerebral implantation of GL261 glioma cells, WBRT, and treatment with WP1066, a blood–brain barrier–penetrant inhibitor of the STAT3 pathway, or the two in combination. The role of the immune system was evaluated using tumor rechallenge strategies, immune-incompetent backgrounds, immunofluorescence, immune phenotyping of tumor-infiltrating immune cells (via flow cytometry), and NanoString gene expression analysis of 770 immune-related genes from immune cells, including those directly isolated from the tumor microenvironment. Results: The combination of WP1066 and WBRT resulted in long-term survivors and enhanced median survival time relative to monotherapy in the GL261 glioma model (combination vs. control P & lt; 0.0001). Immunologic memory appeared to be induced, because mice were protected during subsequent tumor rechallenge. The therapeutic effect of the combination was completely lost in immune-incompetent animals. NanoString analysis and immunofluorescence revealed immunologic reprograming in the CNS tumor microenvironment specifically affecting dendritic cell antigen presentation and T-cell effector functions. Conclusions: This study indicates that the combination of STAT3 inhibition and WBRT enhances the therapeutic effect against gliomas in the CNS by inducing dendritic cell and T-cell interactions in the CNS tumor.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 8_Supplement ( 2021-04-15), p. PO-019-PO-019
    Abstract: Diffuse gliomas are highly aggressive brain tumors that invariably relapse despite treatment with chemo- and radiotherapy. Treatment with alkylating chemotherapy can drive tumors to develop a hypermutator phenotype. In contrast, the genomic effects of radiation therapy (RT) remain unknown. We analyzed the mutational spectra following treatment with ionizing radiation in sequencing data from 190 paired primary-recurrent gliomas from the Glioma Longitudinal Analysis (GLASS) dataset and 3693 post-treatment metastatic tumors from the Hartwig Medical Foundation (HMF). We identified a significant increase in the burden of small deletions following radiation therapy that was independent of other factors. These novel deletions demonstrated distinct characteristics when compared to pre-existing deletions present prior to RT-treatment and deletions in RT-untreated tumors. Radiation therapy-acquired deletions were characterized by a larger deletion size (GLASS and metastatic cohort, P=1.2e-02 and P=8e-11, respectively; Mann-Whitney U test), an increased distance to repetitive DNA elements (P & lt;2.2e-16, Kolmogorov-Smirnov test) and a reduction in microhomology at breakpoints (P=3.2e-02, paired Wilcoxon signed-rank test). These observations suggested that canonical non-homologous end joining (c-NHEJ) was the preferred pathway for DNA double strand break repair of RT-induced DNA damage. Furthermore, radiotherapy resulted in frequent chromosomal deletions and significantly increased frequencies of CDKN2A homozygous deletions. Finally, a high burden of RT-associated deletions was associated with worse clinical outcomes (GLASS and metastatic cohort, P & lt; 1e-04 and P = 2.6e-02, respectively; Wald test). Our results suggest that effective repair of RT-induced DNA damage is detrimental to patient survival and that inhibiting c-NHEJ may be a viable strategy for improving the cancer-killing effect of radiotherapy. Taken together, the identified genomic scars as a result of radiation therapy reflect a more aggressive tumor with increased levels of resistance to follow up treatments. Citation Format: Emre Kocakavuk, Kevin J. Anderson, Frederick S. Varn, Kevin C. Johnson, Samirkumar B. Amin, Erik. P. Sulman, Martijn Lolkema, Floris P. Barthel, Roel G.W. Verhaak. Radiotherapy in cancer is associated with a deletion signature that contributes to poor patient outcomes [abstract]. In: Proceedings of the AACR Virtual Special Conference on Radiation Science and Medicine; 2021 Mar 2-3. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(8_Suppl):Abstract nr PO-019.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 40, No. 16_suppl ( 2022-06-01), p. TPS2078-TPS2078
    Abstract: TPS2078 Background: GBM AGILE (Glioblastoma Adaptive, Global, Innovative Learning Environment) is a biomarker based, multi-arm, international, seamless Phase 2/3 Response Adaptive Randomization platform trial designed to rapidly identify experimental therapies that improve overall survival and confirm efficacious experimental therapies and associated biomarker signatures to support new drug approvals and registration. GBM AGILE is a collaboration between academic investigators, patient organizations and industry to support new drug applications for newly diagnosed and recurrent GBM. With its adaptable structure, GBM AGILE has continued trial activation, inclusion of new investigational therapies, and enrollment globally through the challenges of a global pandemic. Methods: The primary objective of GBM AGILE is to identify therapies that effectively improve the overall survival in patients with ND or recurrent GBM. Bayesian response adaptive randomization is used within subtypes of the disease to assign participants to investigational arms based on their performance. Operating under a Master Protocol, GBM AGILE allows multiple drugs from different pharmaceutical/biotech companies to be evaluated simultaneously and/or over time against a common control. New experimental therapies are added as new information about promising new drugs is identified while other therapies are removed as they complete their evaluation. The master protocol/ trial infrastructure includes efficiencies through an adaptive trial design, shared control arm and operational processes such as risk-based monitoring and enhanced remote activities. GBM AGILE has screened over 1000 patients and enrollment rates are 3 to 4 times greater than traditional GBM trials, with active sites averaging 0.75 to 1 patients/sites/month. While enrollment had an initial dip during the early stages of the pandemic (April-May, 2020), with flexible processes including remote based monitoring, minimizing in person visits, and remote provision of IMP, the enrollment rebounded by June, 2020. Through the use of improved and efficient processes allowed within a master protocol/adaptive platform trial infrastructure, GBM AGILE has been seamlessly operating a global trial during a global pandemic. Clinical trial information: NCT03970447.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2022
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 41, No. 16_suppl ( 2023-06-01), p. 2001-2001
    Abstract: 2001 Background: Differentiating radiation necrosis from tumor progression remains one of the most commonly encountered and clinically challenging scenarios after radiation therapy (RT) for brain metastases (BM). PURSUE (NCT04410367) evaluated the diagnostic performance of 18 F-fluciclovine, an amino acid PET radiopharmaceutical, based on various lesion metrics, to establish image interpretation criteria (IIC) for suspected recurrent BM after RT. Methods: Patients with solid tumor BM were enrolled across 7 US sites if they had a previously irradiated ‘reference’ lesion equivocal on MRI for recurrence and were planned for craniotomy. 18 F-Fluciclovine PET (185 MBq) took place 〈 42 days post-MRI and 1-21 days pre-craniotomy. The primary endpoint was the diagnostic performance (sensitivity, specificity, positive-, and negative-predictive value [PPV/NPV]) of different thresholds of lesion 18 F-fluciclovine uptake on qualitative, visual reads vs central histopathological analysis. Lesion 18 F-fluciclovine uptake was assessed qualitatively by 3 independent blinded readers who visually rated the uptake as ‘mild’ (up to blood pool), ‘moderate’ (above blood pool to parotid), or ‘marked’ (above parotid). Secondary endpoints included the diagnostic performance based on different thresholds of quantitative (e.g., lesion SUV) and dynamic measures of uptake. A committee, including 2 expert imaging physicians independent to PURSUE, reviewed all data in round-table meetings to establish the IIC, which were subsequently used to assess diagnostic performance. Results: All 23 reference lesions in 23 subjects underwent histopathological analysis, with 10 (43%) confirmed as recurrent tumor. The highest performing qualitative measure was ‘marked’, rendering a sensitivity of 92-100%, with variable specificity of 40-80% across readers. SUV max was a reader-independent, high-performing quantitative metric on ROC analysis (AUC 0.87, SUV max threshold 4.8 conferring a sensitivity of 80% and specificity of 85%). Dynamic measures did not provide added diagnostic value. After analyzing these metrics, the committee established IIC as: Lesions with 18 F-fluciclovine uptake of a SUV max equal to or greater than 4.8, or visually greater than the parotid gland, should be considered suspicious for recurrence. Otherwise, recurrence should be considered unlikely. Application of the IIC resulted in a sensitivity of 80%, specificity of 77-85%, PPV of 73-80%, and NPV of 83-85% across the readers. Conclusions: This is the first prospective multicenter trial to evaluate PET characteristics of suspected recurrent BM after RT, verified by histopathology. Qualitative and quantitative IIC show 18 F-fluciclovine to be a high-performing diagnostic tool. These IIC will help evaluate the diagnostic performance of 18 F-fluciclovine PET in future trials. Clinical trial information: NCT04410367 .
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2023
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...