GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 374, No. 6566 ( 2021-10-22), p. 472-478
    Abstract: Antibody-based therapeutics and vaccines are essential to combat COVID-19 morbidity and mortality after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple mutations in SARS-CoV-2 that could impair antibody defenses propagated in human-to-human transmission and spillover or spillback events between humans and animals. To develop prevention and therapeutic strategies, we formed an international consortium to map the epitope landscape on the SARS-CoV-2 spike protein, defining and structurally illustrating seven receptor binding domain (RBD)–directed antibody communities with distinct footprints and competition profiles. Pseudovirion-based neutralization assays reveal spike mutations, individually and clustered together in variants, that affect antibody function among the communities. Key classes of RBD-targeted antibodies maintain neutralization activity against these emerging SARS-CoV-2 variants. These results provide a framework for selecting antibody treatment cocktails and understanding how viral variants might affect antibody therapeutic efficacy.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 375, No. 6585 ( 2022-03-11)
    Abstract: The mammalian neocortex is believed to act as the computational substrate for our highest cognitive abilities, particularly the ability to model the world around us and predict the effects of our actions. Many aspects of cortical structure are repeated across brain regions and conserved across species, suggesting a general-purpose approach to cognition. Within this repeating structure, neurons influence the formation of synaptic connections based on their cell type-specific biases. This results in a stereotyped network architecture in which synapse properties and connectivity are strongly influenced by cell type. Synapses between cell types transmit information in a way that is highly stochastic and depends on the prior history of activity. The dynamic properties of synapses are also strongly dependent on both the pre- and postsynaptic cell types, suggesting an important role in cortical function. This provides a major source of computational diversity that is often absent in neuroscience modeling studies as well as modern machine-learning architectures. Neurons are broadly grouped into excitatory and inhibitory classes, each of which can be divided into more specific subclasses. Cortical inhibitory neurons, for example, are commonly divided into Pvalb, Sst, and Vip subclasses and are distributed broadly across cortical layers. In contrast, most excitatory cell subclasses occupy narrower regions across cortical layers. RATIONALE Understanding the connectivity among cell subclasses and the computations performed at their synapses is an essential step to understanding cortical circuit function. This has led to experiments in different species, brain regions, ages, etc. that focus on one or a few circuit elements. These efforts offer an excellent depth of insight to isolated regions of the circuit but offer a fragmented view of the circuit as a whole. Further, the difficulty of accessing these historical data discourages reuse and reanalysis. We saw an opportunity to expand upon this history and conduct a more comprehensive and standardized survey than has been attempted in the past. By publishing the analyses, tools, and data that characterize cortical connection properties, we encourage a more unified approach to describing cortical function. RESULTS We used microelectrodes to record the activity of 1731 synaptic connections across diverse cell types in living tissue samples from mouse and human neocortex. We characterized these connections with the aid of a synaptic release model and found that excitatory dynamics aligned with postsynaptic cell subclass, whereas inhibitory dynamics aligned with the presynaptic subclass in ways that were subclass specific. Synaptic variability was a primary driver of these cross-subclass differences in mouse cortex. Compared with the mouse, human excitatory connections were tuned toward stability and reliability pointing toward species differences in cortical function. We further introduced a method to estimate the rate of connectivity between cell types that accounts for differences between experimental preparations. With this approach, we compared connection probabilities across layer, cell subclass, and species. For instance, connectivity between excitatory cells and Vip inhibitory cells was present in layer 2/3 and absent in layer 5/6 of mouse cortex. Likewise, connection probability among layer 4 excitatory cells was high in mouse cortex and nearly absent in human cortex. Overall, we found that layer-specific circuit representations are necessary to capture the diversity of intralaminar connectivity among cortical cell subclasses. CONCLUSION We have generated a comprehensive dataset describing synaptic connections within each layer in the mouse and human cortex. Our deep characterization of synapses points toward important principles of cortical organization that relate to current topics in computational neuroscience and machine learning. The open distribution of our data, analyses, and tools enables greater realism in constraining network and synapse models. Intralaminar circuit diagram among major excitatory (Pyr) and inhibitory (Pvalb, Sst, and Vip) cell subclasses aggregated from all layers of mouse primary visual cortex. Line (axon) thickness depicts the relative weight (strength and probability of connection) of connections between subclasses. Black dots indicate connections that are stronger in layer 2/3 compared with layer 5. Axon color shows the spike-to-spike variance in amplitude of synaptic signaling, which is strongly cell subclass dependent. Excitatory synapse variance depends on the postsynaptic subclass. Pvalb cells project low-variance connections, whereas Sst and Vip project high-variance connections. More saturated axon colors indicate higher confidence measurements.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 374, No. 6563 ( 2021-10)
    Abstract: Climate variability in the tropical Pacific affects global climate on a wide range of time scales. On interannual time scales, the tropical Pacific is home to the El Niño–Southern Oscillation (ENSO). Decadal variations and changes in the tropical Pacific, referred to here collectively as tropical Pacific decadal variability (TPDV), also profoundly affect the climate system. Here, we use TPDV to refer to any form of decadal climate variability or change that occurs in the atmosphere, the ocean, and over land within the tropical Pacific. “Decadal,” which we use in a broad sense to encompass multiyear through multidecadal time scales, includes variability about the mean state on decadal time scales, externally forced mean-state changes that unfold on decadal time scales, and decadal variations in the behavior of higher-frequency modes like ENSO.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 39 ( 2023-09-26)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 39 ( 2023-09-26)
    Abstract: Mammalian FNDC5 encodes a protein precursor of Irisin, which is important for exercise-dependent regulation of whole-body metabolism. In a genetic screen in Drosophila , we identified Iditarod ( Idit ), which shows substantial protein homology to mouse and human FNDC5 , as a regulator of autophagy acting downstream of Atg1/Atg13. Physiologically, Idit -deficient flies showed reduced exercise performance and defective cold resistance, which were rescued by exogenous expression of Idit . Exercise training increased endurance in wild-type flies, but not in Idit -deficient flies. Conversely, Idit is induced upon exercise training, and transgenic expression of Idit in wild-type flies increased endurance to the level of exercise trained flies. Finally, Idit deficiency prevented both exercise-induced increase in cardiac Atg8 and exercise-induced cardiac stress resistance, suggesting that cardiac autophagy may be an additional mechanism by which Idit is involved in the adaptive response to exercise. Our work suggests an ancient role of an Iditarod/Irisin/FNDC5 family of proteins in autophagy, exercise physiology, and cold adaptation, conserved throughout metazoan species.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2020
    In:  Science Vol. 367, No. 6485 ( 2020-03-27), p. 1477-1481
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 367, No. 6485 ( 2020-03-27), p. 1477-1481
    Abstract: The El Niño–Southern Oscillation (ENSO) shapes global climate patterns yet its sensitivity to external climate forcing remains uncertain. Modeling studies suggest that ENSO is sensitive to sulfate aerosol forcing associated with explosive volcanism but observational support for this effect remains ambiguous. Here, we used absolutely dated fossil corals from the central tropical Pacific to gauge ENSO’s response to large volcanic eruptions of the last millennium. Superposed epoch analysis reveals a weak tendency for an El Niño–like response in the year after an eruption, but this response is not statistically significant, nor does it appear after the outsized 1257 Samalas eruption. Our results suggest that those models showing a strong ENSO response to volcanic forcing may overestimate the size of the forced response relative to natural ENSO variability.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 32 ( 2020-08-11), p. 19061-19071
    Abstract: Given the powerful implications of relationship quality for health and well-being, a central mission of relationship science is explaining why some romantic relationships thrive more than others. This large-scale project used machine learning (i.e., Random Forests) to 1) quantify the extent to which relationship quality is predictable and 2) identify which constructs reliably predict relationship quality. Across 43 dyadic longitudinal datasets from 29 laboratories, the top relationship-specific predictors of relationship quality were perceived-partner commitment, appreciation, sexual satisfaction, perceived-partner satisfaction, and conflict. The top individual-difference predictors were life satisfaction, negative affect, depression, attachment avoidance, and attachment anxiety. Overall, relationship-specific variables predicted up to 45% of variance at baseline, and up to 18% of variance at the end of each study. Individual differences also performed well (21% and 12%, respectively). Actor-reported variables (i.e., own relationship-specific and individual-difference variables) predicted two to four times more variance than partner-reported variables (i.e., the partner’s ratings on those variables). Importantly, individual differences and partner reports had no predictive effects beyond actor-reported relationship-specific variables alone. These findings imply that the sum of all individual differences and partner experiences exert their influence on relationship quality via a person’s own relationship-specific experiences, and effects due to moderation by individual differences and moderation by partner-reports may be quite small. Finally, relationship-quality change (i.e., increases or decreases in relationship quality over the course of a study) was largely unpredictable from any combination of self-report variables. This collective effort should guide future models of relationships.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2020
    In:  Science Vol. 369, No. 6509 ( 2020-09-11)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 369, No. 6509 ( 2020-09-11)
    Abstract: Robock claims that our analysis fails to acknowledge that pan-tropical surface cooling caused by large volcanic eruptions may mask El Niño warming at our central Pacific site, potentially obscuring a volcano–El Niño connection suggested in previous studies. Although observational support for a dynamical response linking volcanic cooling to El Niño remains ambiguous, Robock raises some important questions about our study that we address here.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...