GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-19
    Description: Argnani (2021, hereinafter ARG2021) commented on the paper by Barreca et al. (2021, hereinafter BRC2021) titled: “The Strait of Messina: Seismotectonics and the source of the 1908 earthquake”, in which a new seismotectonic model and constraints on the possible source fault (the so-called W-Fault) for the 1908 disastrous seismic event were provided. Results from BRC2021 led to a revision of most of the previously published papers on the issue. ARG2021 commented both on the recent activity of the W-Fault and even about its existence in the offshore. In fact, according to the author's inferences: “it may belong to a fault system that is no longer active” and, contradictorily, “the offshore occurrence of the W-Fault is not supported by the data”. The comment is mostly based on a new tectonic interpretation that the author performed directly on the BRC2021 figures, where the offshore portion of the W-fault is illustrated. In this reply, we demonstrate that the interpretation provided by ARG2021 is affected by several oversights that led the author to erroneous conclusions about the issue. Accordingly, we strongly confirm both the occurrence of the W-Fault in the offshore and the present-day activity of this structure, the only active fault capable of producing large earthquakes in the Strait of Messina area.
    Description: Published
    Description: 103962
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-27
    Description: Argnani (2021) provides a commentary (hereafter ARGN) on our paper titled: “Deformation Pattern of the Northern Sector of the Malta Escarpment: Fault Dimension, Slip Prediction, and Seismotectonic Implications,” which was published in the journal Frontiers in Earth Science in January 2021 (Gambino et al., 2021, hereafter GAMB). Through the interpretation of eight new seismic profiles (six of which are reported in Supplementary Figure S1 of GAMB) crossing the Malta Escarpment, GAMB pointed to a better definition of the geometry of three active faults (F1, F2, F3) and their seismic potential by employing slip tendency modeling and forward analysis. The results suggest that F3 is prone to be reactivated under the achieved stress field and has the capacity of generating M 〉 7 earthquakes. ARGN raises concerns about the higher resolution and less penetration of the eight newly acquired high-resolution multichannel reflection seismic profiles and the seismic-stratigraphic pattern proposed by GAMB. According to ARGN, “the seismic profiles analyzed by GAMB belong to different sets and have very different seismic characters and resolution, making seismic facies correlation pretty difficult, also because no tie lines are available. As a result, stratigraphic correlations are highly speculative and the ensuing uncertainties undermine the timing of the tectonic evolution envisaged by GAMB, as well as the age and rate of activity of tectonic structures.” Furthermore, ARGN argues on the hypothesis of an early large-scale slope instability affecting the area. Most of the statements of ARGN seem to be based on his available older multichannel reflection seismic profiles, which have, indeed, a higher penetration but less resolution. We also agree that high-resolution digital multichannel seismic profiles are not easily comparable with low-resolution multichannel seismic lines, but we see the clear advantage of a state-of-the-art technology to image the upper strata of sedimentary systems. The used system proved its robustness in many different settings worldwide and has been successfully used for many pre-site surveys for drilling campaigns for the IODP and ICDP. As a result, we rebut point-by-point ARGN’s comments and stand by our model on the active deformation pattern and seismotectonics of the northern sector of the Malta Escarpment.
    Description: Published
    Description: 886439
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-29
    Description: Recent advances in underwater and airborne robotic systems and ocean technologies have opened new perspectives in marine geology and its applications in the context of coastal and marine economic activities, whose sustainable development is increasingly acknowledged as a pillar for the new blue economy. BridgET (Bridging the gap between the land and the sea in a virtual Environment for innovative Teaching and community involvement in the science of climate change-induced marine and coastal geohazard) is an EU ERASMUS+ project designed to develop innovative and inclusive teaching methods to address a growing demand for strategic skills and scientific expertise in the field of 3D geological mapping of coastal environments. Seamless integration of the wide variety of multisource and multiscale onshore, nearshore and offshore geospatial data is indeed one of the main areas for improvement in the implementation of efficient management practices in coastal regions, where climate change, rising sea level, and geohazards are considerable environmental issues. BridgET involves a partnership consisting of six European universities with outstanding expertise in the study of geological hazards, and climate impacts in marine and coastal areas (i.e., University of Milano-Bicocca, Italy, Arctic University of Tromsø/CAGE - Norway, National and Kapodistrian University of Athens - Greece, Kiel University, Germany, University of Liege – Belgium, and the University of Malta), two Italian research institutes (INGV and INAF) and a German company (Orthodrone GmvH) specialized in UAS-based LiDAR and photogrammetry data acquisition services and analyses. Project implementation relies on delivering learning and teaching activities through dedicated summer schools for MSc students by efficiently combining the partner’s expertise. Schools focus on giving students a hands-on experience with the variety of methods and procedures adopted in geospatial data acquisition and processing, including the use of drones (Uncrewed Aerial System – UAS), acoustic remote sensing techniques and underwater robotic systems, together with the progress made by computer visions and digital image analysis by using Artificial Intelligence (AI). Students are also introduced to the opportunity to easily examine multiple viewing angles of the seabed and coastal 3D surfaces by using immersive and nonimmersive Virtual Reality (VR), to bring them closer to a more straightforward observation of geomorphological data and geological phenomena. The first Summer School was held in Santorini between the 3rd and 14th of October, 2022. It was attended by 26 students coming from 13 different countries. Teaching and learning activities included several classrooms, fieldwork, laboratory sessions, and seven seminars and cultural visits dealing with transversal topics, allowing students to approach an integrated understanding of human interaction with physical processes from social and economic perspectives. In this presentation, we give examples of course content used to allow students to develop a deeper understanding of theoretical and practical knowledge of climate-induced coastal and marine geohazards. Participants' opinions on the quality of the offered learning/training activities of the Erasmus+ BridgET Santorini Summer School (collected through a dedicated questionnaire) will also be presented. Erasmus+ BridgET Team: Varvara Antoniou, Fabio Luca Bonali, Clara Drummer, Theynushya Esalingam, Luca Fallati, Susanna Falsaperla, Felix Gross, Hans-Balder havenith, Juri Klusak, Sebastian Krastel, Iver Martens, Aaron Micallef, Paraskevi Nomikou, Giuliana Panieri, Danilo Reitano, Julian Teege, Alessandro Tibaldi, Andrea Giulia Varzi, Fabio Vitello, Othonas Vlasopoulos
    Description: Published
    Description: Vienna (Austria)
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Keywords: marine geosciences ; education ; Europe ; 04.02. Exploration geophysics ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung
    In:  EPIC3Expeditionsprogramm Polarstern, Bremerhaven, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 48 p., pp. 1-48
    Publication Date: 2024-04-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Expedition program , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...