GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Multiphase flow. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (642 pages)
    Edition: 1st ed.
    ISBN: 9783030723613
    Series Statement: Fluid Mechanics and Its Applications Series ; v.128
    DDC: 532.05
    Language: English
    Note: Intro -- Contents -- Introduction -- Reactive Bubbly Flows-An  Interdisciplinary Approach -- Control of the Formation and Reaction of Copper-Oxygen Adduct Complexes in Multiphase Streams -- 1 Introduction -- 1.1 Basics of Cu/O2 Chemistry -- 1.2 Classical Systems -- 2 Novel Bisguanidine Copper Systems for O2 Activation and Transfer -- 2.1 Bisguanidine Toluene Systems for O2 Activation -- 2.2 Synthesis of Bisguanidine Toluene Systems for O2 Activation -- 2.3 Bisguanidine Toluene Systems for O2 Transfer -- 2.4 Fluorescence Studies with Bisguanidine Toluene Systems for O2 Transfer -- 3 Novel Hybrid Guanidine Copper Systems for O2 Activation and Transfer -- 3.1 Hybrid Guanidine Copper Systems for O2 Activation with Non-coordinating Anions -- 3.2 Hybrid Guanidine Copper Systems for O2 Activation with Coordinating Anions -- 3.3 Variations of the Amine Moiety in Hybrid Guanidine Ligands -- 4 Conclusion and Outlook -- References -- In Situ Characterizable High-Spin Nitrosyl-Iron Complexes with Controllable Reactivity in Multiphase Reaction Media -- 1 Introduction -- 2 [Fe(H2O)5(NO)]2+, the 'Brown-Ring' Chromophore -- 3 Syntheses, Structure and Bonding of {FeNO}7- and {Fe(NO)2}9-type Halogenido Nitrosyl Ferrates -- 4 Structure and Bonding of Nitrosyl-iron(II) Compounds with Aminecarboxylato Co-Ligands in Aqueous Solution -- 4.1 First Part: Less Stable Compounds -- 4.2 Second Part: Stable Compounds -- 4.3 Stability of the Fe-NO Linkage in Aqueous Solution -- 5 The 'Non-Innocent' Nitrosyl Ligand and the Challenge of IUPAC's Oxidation-State Assignment -- References -- Formation, Reactivity Tuning and Kinetic Investigations of Iron "Dioxygen" Intermediate Complexes and Derivatives in Multiphase Flow Reactions -- 1 Introduction -- 2 O2 Activation -- 3 The Iron HPTB System -- 3.1 General Aspects -- 3.2 Previous Investigations on the Iron HPTB System. , 3.3 Investigations on the Iron HPTB System -- 4 Conclusion and Outlook -- References -- Analysis of Turbulent Mixing Und Mass Transport Processes in Bubble Swarms Under the Influence of Bubble-Induced Turbulence -- 1 Introduction -- 2 Counterflow Water Channel -- 3 Characterization of the Counter-Flow Channel -- 4 Emulation of Bubble Induced Turbulence -- 4.1 Free Moving Particle Grids -- 4.2 Characterization of the Particle Grids and Turbulence Analysis -- 4.3 Conclusion -- 5 Behavior of a Single Bubble in Swarm like Background Turbulence -- 5.1 Experimental Setup -- 6 Movement in Emulated Turbulence -- 6.1 Deformation of the Surface -- 6.2 Influence of the Turbulence on the Bubbles Wake Structures -- 6.3 Conclusion -- 7 Conclusions and Outlook -- References -- Experimental Studies on the Hydrodynamics, Mass Transfer and Reaction in Bubble Swarms with Ultrafast X-ray Tomography and Local Probes -- 1 Introduction -- 2 Reaction Systems Used for Experimental Investigation of Bubbly Flows -- 2.1 Chemical Absorption of CO2 -- 2.2 Reaction of FeII(ligand)/NO -- 3 Experimental Setup and Methods -- 3.1 Bubble Column Setup for CO2 Absorption Measurements -- 3.2 Ultrafast X-ray CT for Investigation of Bubble Column Hydrodynamics -- 3.3 Wire-Mesh Sensor for Mass Transfer Measurements -- 3.4 Experimental Setup for Experiments with the FeII(edta)/NO System -- 4 Experimental Results -- 4.1  Gas Dynamics and Bubble Properties of Uniform Bubbly Flow -- 5 Conclusion and Outlook -- References -- Experimental Investigation of Local Hydrodynamics and Chemical Reactions in Taylor Flows Using Magnetic Resonance Imaging -- 1 Introduction -- 2 Experimental Flow Setup for the Investigation of Taylor Flows Inside a Horizontal Bore MRI Scanner -- 2.1 Initial Version of the Flow Setup -- 2.2 Improved Version of the Flow Setup -- 2.3 Hydrodynamic Investigation by PIV. , 3 Development of an MRI Setup for Taylor Flow Investigations Inside a Horizontal Bore MRI Scanner -- 4 Development of an MRI Method for Taylor Flow Investigations -- 4.1 Influence of Different MRI Parameters on the Acquired Data -- 4.2 Influence of Gas-Liquid Mass Transfer on the Acquired Data -- 4.3 MRI Sequence for Taylor Flow Investigation -- 4.4 MRI Data Acquisition and Processing -- 5 MRI of Hydrodynamics Inside Taylor Flows -- 6 MRI of Chemical Reactions Inside Taylor Flows -- 7 Conclusion and Outlook -- References -- Investigation of the Influence of Transport Processes on Chemical Reactions in Bubbly Flows Using Space-Resolved In Situ Analytics and Simultaneous Characterization of Bubble Dynamics in Real-Time -- 1 Introduction and Aims -- 2 Experimental Setups -- 2.1 Taylor Flow Setup -- 2.2 Real-Time Raman Process Analysis System -- 2.3 Continuous-Flow Setup with UV/VIS Spectroscopy -- 2.4 Real-Time Tomographic Process Analysis System -- 3 Experimental Results -- 3.1 Evaluation of Chemical Reaction Systems Based on Spectroscopy -- 3.2 Evaluation of the Confocal Laser Raman Spectroscopy Setup -- 3.3 Measurements of Reaction Kinetics with a SuperFocus Mixer -- 3.4 Concentration Measurements with the Real-Time Raman Process Analysis System Applied to a Taylor Flow of Gaseous CO2 in Aqueous Sodium Hydroxide Solutions -- 3.5 Measurement of a Wake Below a Gas Bubble Using Laser Beams -- 3.6 Characterization of the Real-Time Tomographic Process Analysis System -- 4 Summary and Conclusion -- References -- Determination of Intrinsic Gas-Liquid Reaction Kinetics in Homogeneous Liquid Phase and the Impact of the Bubble Wake on Effective Reaction Rates -- 1 Introduction/Motivation -- 2 Determination of Gas-Liquid Reaction Kinetics in Homogeneous Liquid Phase -- 2.1 Experimental Setup -- 2.2 Experimental Results. , 2.3 Kinetic Model of the Toluene Oxidation -- 2.4 Validation of the Kinetic Model -- 3 Numerical Study of the Toluene Oxidation in a Reactive Bubbly Flow -- 3.1 Numerical Model -- 3.2 Results -- 4 Study of the Toluene Oxidation in a Technical Bubble Column -- 4.1 Experimental Setup -- 4.2 Experimental Conditions -- 4.3 Results -- 5 Numerical Study of the Mixing Dependencies in a Reactive Bubbly Flow -- 5.1 Preliminary Considerations -- 5.2 Is the Overall Reaction Influenced by Mixing? -- 5.3 When Does Micro Mixing Affect the Overall Reaction Rate? -- 5.4 What Causes Mixture Masking? -- 6 Conclusions -- References -- Mass Transfer Around Gas Bubbles in Reacting Liquids -- 1 Introduction -- 1.1 Fluid Dynamics of Single Bubbles -- 1.2 Mass Transfer of Single Bubbles -- 2 Experimental Setup and Methods -- 2.1 Measurement of Velocities -- 2.2 Evaluation of Mass Transfer Coefficients -- 2.3 Material Properties and Fluid Dynamics of FeII(Ligand) Systems -- 3 Physical Mass Transfer -- 4 Chemical Reaction -- 4.1 Enhancement Factors Due to Chemical Reaction of CO2 in NaOHaq -- 4.2 System NO in FeII(Ligand) -- 5 Conclusion -- References -- Experimental Investigation of Reactive Bubbly Flows-Influence of Boundary Layer Dynamics on Mass Transfer and Chemical Reactions -- 1 Introduction -- 1.1 Mass Transfer in Reactive Bubbly Flows -- 2 Determination of Mass Transfer Relevant Kinetics in a SuperFocus Mixer -- 2.1 Sodium Sulfite Oxidation as a Model Reaction -- 2.2 Concentration Measurements Using Laser Induced Fluorescence (LIF) -- 2.3 Experimental Setup and Methods -- 2.4 Experimental Results -- 3 Investigation of Chemical Reactions by Means of Taylor Bubbles -- 3.1 Experimental Setup and Methods -- 3.2 Experimental Results -- 3.3 Analyzing Wake Structures at Taylor Bubbles Using Lagrangian Coherent Structures. , 3.4 Mass Balance for Wake Structures in Taylor Flows -- 4 Local Mass Transfer Measurements at Ascending Bubbles -- 4.1 Experimental Setup and Methods -- 4.2 Experimental Results -- 5 Conclusion and Outlook -- References -- Experimental Characterization of Gas-Liquid Mass Transfer in a Reaction Bubble Column Using a Neutralization Reaction -- 1 Experimental Setup of the Bubble Column -- 2 Applied Measurement Techniques -- 2.1 Bubble Characterization with Shadowgraphy and Particle-Tracking-Velocimetry -- 2.2 Mass Transfer Measurements through 2-Tracer-Laser-Induced-Fluorescence -- 2.3 Measurement of the Liquid Flow Field by Means of Particle Image Velocimetry -- 3 Reaction System -- 4 Results -- 4.1 Bubble Parameters -- 4.2 Mass Transfer from CO2-Bubbles -- 4.3 Mass Transfer Coefficients -- 4.4 Liquid Velocity -- 5 Conclusions -- References -- Modeling and Simulation of Convection-Dominated Species Transport in the Vicinity of Rising Bubbles -- 1 Introduction -- 2 Numerical Methods -- 2.1 Geometrical Volume-of-Fluid Approach -- 2.2 Single-Phase Approximation -- 3 Modeling of Convection-Dominated Concentration Boundary Layers -- 3.1 Overview -- 3.2 Effect of Insufficient Mesh Resolution -- 3.3 Analytical and Data-Driven Profile Reconstruction -- 3.4 Implementation in Simulation Approaches -- 3.5 Validation -- 4 Reactive Species Transport Around Single Rising Bubbles -- 4.1 Overview -- 4.2 Velocity and Concentration Fields -- 4.3 Species Transfer and Enhancement -- 4.4 Local Selectivity -- 5 Conclusion and Outlook -- References -- Development and Application of Direct Numerical Simulations for Reactive Transport Processes at Single Bubbles -- 1 Introduction -- 2 Model and Method -- 2.1 Mathematical Model -- 2.2 Numerical Methods -- 3 Numerical Validation -- 3.1 Computational Case Setup -- 3.2 Validation Study. , 4 Reactive Species Transfer from Single Rising Bubbles.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...