GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Accession number, genetics; amplicon sequencing; Angeles Alvarino; Area/locality; Bacteria; Bay of Biscay; CTD/Rosette; CTD1; CTD10; CTD11; CTD12; CTD13; CTD14; CTD15; CTD2; CTD3; CTD4; CTD5; CTD6; CTD7; CTD8; CTD9; CTD-RO; Date/Time of event; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; DEPTH, water; DR10; DR15; DR4; DR7; DR9; Dredge, rock; DRG_R; Event label; flow cytometry; Flow cytometry; Geology, comment; Latitude of event; Longitude of event; Measurement conducted; Method/Device of event; Phytoplankton; population genetics; Porifera; Sample code/label; Sample ID; single-nucleotide polymorphisms (SNPs); SponGES; SponGES_0617; SPONGES_0617_04-DR4; SPONGES_0617_07-CTD1; SPONGES_0617_12-CTD2; SPONGES_0617_13-CTD3; SPONGES_0617_15-DR7; SPONGES_0617_18-CTD4; SPONGES_0617_19-CTD5; SPONGES_0617_23-DR9; SPONGES_0617_24-CTD6; SPONGES_0617_27-CTD7; SPONGES_0617_28-DR10; SPONGES_0617_29-CTD8; SPONGES_0617_40-CTD9; SPONGES_0617_42-CTD10; SPONGES_0617_46-CTD11; SPONGES_0617_49-CTD12; SPONGES_0617_55-CTD13; SPONGES_0617_58-CTD14; SPONGES_0617_60-DR15; SPONGES_0617_61-CTD15  (1)
  • Physical oceanography  (1)
  • 2020-2024  (2)
Document type
Keywords
Language
Years
  • 2020-2024  (2)
Year
  • 1
    Publication Date: 2023-11-14
    Description: Agulhas leakage, the warm and salty inflow of Indian Ocean water into the Atlantic Ocean, is of importance for the climate-relevant Atlantic Meridional Overturning Circulation. South of Africa, the eastward turning Agulhas Current sheds Agulhas rings, cyclones and filaments of order 100 km that carry the Indian Ocean water into the Cape Basin and further into the Atlantic. Here, we show that the resolution of submesoscale flows of order 10 km in an ocean model leads to 40 % more Agulhas leakage and more realistic Cape Basin water-masses compared to a parallel non-submesoscale resolving simulation. Moreover, we show that submesoscale flows strengthen shear-edge eddies and in consequence lee cyclones at the northern edge of the Agulhas Current, as well as the leakage pathway in the region of the filaments that takes place outside of mesoscale eddies. This indicates that the increase in leakage can be attributed to stronger Agulhas filaments, when submesoscale flows are resolved.
    Description: Leakage of warm, salty waters from the Indian Ocean into the Atlantic increases by up to 40 % in high-resolution numerical ocean model simulations, suggesting that low-resolution models underestimate this key part of the global meridional overturning circulation.
    Description: Agence Nationale de la Recherche (French National Research Agency) https://doi.org/10.13039/501100001665
    Description: https://hdl.handle.net/20.500.12085/c572cde8-a82c-4c2d-9bd7-288dfc8f1939
    Description: https://www.aoml.noaa.gov/phod/gdp/data.php
    Description: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOBAL_REANALYSIS_PHY_001_030
    Description: https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
    Keywords: ddc:551.46 ; Climate and Earth system modelling ; Physical oceanography
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-25
    Description: Connectivity is a fundamental process driving the persistence of marine populations and their adaptation potential in response to environmental change. In this study, we analysed the population genetics of two morphologically highly similar deep-sea sponge clades (Phakellia hirondellei and the 'Topsentia-and-Petromica (TaP)' clade) at three locations in the Cantabrian Sea. Sponge taxonomy was assessed by spicule analyses, as well as by 18S sequencing and COI sequencing. The corresponding host microbiome was analysed by 16S rRNA gene sequencing. In addition we set up an oceanographic modelling framework, for which we used seawater flow cytometry data (derived from bottom depths of CTD casts) as ground-truthing data.
    Keywords: Accession number, genetics; amplicon sequencing; Angeles Alvarino; Area/locality; Bacteria; Bay of Biscay; CTD/Rosette; CTD1; CTD10; CTD11; CTD12; CTD13; CTD14; CTD15; CTD2; CTD3; CTD4; CTD5; CTD6; CTD7; CTD8; CTD9; CTD-RO; Date/Time of event; Deep-sea Sponge Grounds Ecosystems of the North Atlantic; DEPTH, water; DR10; DR15; DR4; DR7; DR9; Dredge, rock; DRG_R; Event label; flow cytometry; Flow cytometry; Geology, comment; Latitude of event; Longitude of event; Measurement conducted; Method/Device of event; Phytoplankton; population genetics; Porifera; Sample code/label; Sample ID; single-nucleotide polymorphisms (SNPs); SponGES; SponGES_0617; SPONGES_0617_04-DR4; SPONGES_0617_07-CTD1; SPONGES_0617_12-CTD2; SPONGES_0617_13-CTD3; SPONGES_0617_15-DR7; SPONGES_0617_18-CTD4; SPONGES_0617_19-CTD5; SPONGES_0617_23-DR9; SPONGES_0617_24-CTD6; SPONGES_0617_27-CTD7; SPONGES_0617_28-DR10; SPONGES_0617_29-CTD8; SPONGES_0617_40-CTD9; SPONGES_0617_42-CTD10; SPONGES_0617_46-CTD11; SPONGES_0617_49-CTD12; SPONGES_0617_55-CTD13; SPONGES_0617_58-CTD14; SPONGES_0617_60-DR15; SPONGES_0617_61-CTD15
    Type: Dataset
    Format: text/tab-separated-values, 550 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...