GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Southern Ocean  (1)
  • TRAFFIC; Trophic Transfer Efficiency in the Benguela Current  (1)
  • ANT-XXIX/1; BONGO; Bongo net; Canarias Sea; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Dry mass per individual; Elevation of event; Event label; Ingestion rate of carbon per day per individual; Latitude of event; Longitude of event; MSN; Multiple opening/closing net; PLA; Plankton net; Polarstern; PS81; PS81/001-3; PS81/001-4; PS81/002-3; PS81/004-1; PS81/004-4; PS81/004-6; PS81/005-6; PS81/007-2; PS81/008-6; PS81/009-4; PS81/010-3; PS81/011-4; PS81/012-4; PS81/013-6; PS81/014-4; Respiration rate, carbon, per individual; Respiration rate, oxygen, per dry mass; Respiration rate, oxygen, per individual; Sample code/label; South Atlantic Ocean; Species; Stage; Treatment: temperature
  • Antarctic blue whale
  • 2020-2024  (2)
Document type
Keywords
Publisher
Language
Years
Year
  • 1
    Publication Date: 2024-03-12
    Description: Zooplankton plays a notable role in ocean biogeochemical cycles. However, it is often simulated as one generic group and top closure term in ocean biogeochemical models. This study presents the description of three zooplankton functional types (zPFTs, micro‐, meso‐ and macrozooplankton) in the ocean biogeochemical model FESOM‐REcoM. In the presented model, microzooplankton is a fast‐growing herbivore group, mesozooplankton is another major consumer of phytoplankton, and macrozooplankton is a slow‐growing group with a low temperature optimum. Meso‐ and macrozooplankton produce fast‐sinking fecal pellets. With three zPFTs, the annual mean zooplankton biomass increases threefold to 210 Tg C. The new food web structure leads to a 25% increase in net primary production and a 10% decrease in export production globally. Consequently, the export ratio decreases from 17% to 12% in the model. The description of three zPFTs reduces model mismatches with observed dissolved inorganic nitrogen and chlorophyll concentrations in the South Pacific and the Arctic Ocean, respectively. Representation of three zPFTs also strongly affects phytoplankton phenology: Fast nutrient recycling by zooplankton sustains higher chlorophyll concentrations in summer and autumn. Additional zooplankton grazing delays the start of the phytoplankton bloom by 3 weeks and controls the magnitude of the bloom peak in the Southern Ocean. As a result, the system switches from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Overall, the results suggest that representation of multiple zPFTs is important to capture underlying processes that may shape the response of ecosystems and ecosystem services to on‐going and future environmental change in model projections.
    Description: Plain Language Summary: Zooplankton plays an important role in the ocean food web and biogeochemical cycles. However, it is often represented in very simple forms in mathematical models that are, for example, used to investigate how marine primary productivity will react to climate change. To understand how these models would change when more complicated formulations for zooplankton are used, we present here a new version of the model with three (instead of only one) zooplankton groups. We find that this more complicated representation leads to higher zooplankton biomass, which is closer to observations, and this stimulates growth of phytoplankton since zooplankton also returns nutrients into the system. In addition, zooplankton grazing controls the seasonal cycle of phytoplankton, as we show for one example in the Southern Ocean.
    Description: Key Points: Nutrient recycling by zooplankton stimulates net primary production in the biogeochemical model REcoM‐2. Modeling zooplankton functional types (zPFTs) leads to a switch from a light‐controlled Sverdrup system to a dilution‐controlled Behrenfeld system. Implementing multiple zPFTs improves the modeled zooplankton biomass and zooplankton‐mediated biogeochemical fluxes.
    Description: Helmholtz Young Investigator Group Marine Carbon and Ecosystem Feedbacks in the Earth System [MarESys]
    Description: https://doi.org/10.1594/PANGAEA.779970
    Description: https://doi.org/10.1594/PANGAEA.785501
    Description: https://doi.org/10.1594/PANGAEA.777398
    Description: https://www.nodc.noaa.gov/OC5/woa18/woa18data.html
    Description: http://sites.science.oregonstate.edu/ocean.productivity/index.php
    Description: https://doi.pangaea.de/10.1594/PANGAEA.942192
    Keywords: ddc:577.7 ; Southern Ocean ; zooplankton ; ocean food web ; biogeochemical cycles ; modeling
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-17
    Description: Small copepod genera play an important role in marine food webs and biogeochemical fluxes but have been neglected in many studies. Abundance, biomass and carbon consumption rates of small- (〈1 mm prosome length (PL)), medium- (1-1.5 mm PL) and large-sized (〉2 mm PL) copepods along a cross-shelf transect in the southern Benguela upwelling system were determined using rather high taxonomic resolution. Zooplankton samples were collected with a Multinet (Hydrobios Multinet midi, 5 nets with 200 µm meshsize) during the Meteor cruise M153 in February/March 2019. Calanoids contributed on average 55 ± 19% to total copepod abundance and 82 ± 13% to total copepod biomass. Small-sized Oithona spp. (119/114 mg C m-2 d-1) and Clauso-/Paracalanidae (87/263 mg C m-2 d-1) as well as large-sized Calanoides natalis (47/193 mg C m-2 d-1) were the dominant consumers at the most inshore stations. Small and medium-sized copepodite stages of Metridia lucens were also important, especially towards the continental slope. At offshore stations, Para-/Clausocalanidae (17-27 mg C m-2 d-1), Oithona spp. (9-16 mg C m-2 d-1), Pleuromamma spp. (0-16 mg C m-2 d-1), Calanus agulhensis (0-15 mg C m-2 d-1), Acartia spp. (0-12 mg C m-2 d-1), C. natalis (0-10 mg C m-2 d-1) and M. lucens (2-6 mg C m-2 d-1) were dominant consumers. Hence, usually small- and medium-sized copepods dominated total copepod ingestion, emphasizing that inadequate representation of small copepods will lead to significant underestimations and misinterpretations of the functioning of zooplankton communities, and finally to inadequate biogeochemical models.
    Keywords: TRAFFIC; Trophic Transfer Efficiency in the Benguela Current
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...