GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (5)
  • 2020-2024  (5)
  • 1
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Human Brain Mapping Vol. 42, No. 1 ( 2021-01), p. 110-127
    In: Human Brain Mapping, Wiley, Vol. 42, No. 1 ( 2021-01), p. 110-127
    Abstract: When speech intelligibility is reduced, listeners exploit constraints posed by semantic context to facilitate comprehension. The left angular gyrus (AG) has been argued to drive this semantic predictability gain. Taking a network perspective, we ask how the connectivity within language‐specific and domain‐general networks flexibly adapts to the predictability and intelligibility of speech. During continuous functional magnetic resonance imaging (fMRI), participants repeated sentences, which varied in semantic predictability of the final word and in acoustic intelligibility. At the neural level, highly predictable sentences led to stronger activation of left‐hemispheric semantic regions including subregions of the AG (PGa, PGp) and posterior middle temporal gyrus when speech became more intelligible. The behavioural predictability gain of single participants mapped onto the same regions but was complemented by increased activity in frontal and medial regions. Effective connectivity from PGa to PGp increased for more intelligible sentences. In contrast, inhibitory influence from pre‐supplementary motor area to left insula was strongest when predictability and intelligibility of sentences were either lowest or highest. This interactive effect was negatively correlated with the behavioural predictability gain. Together, these results suggest that successful comprehension in noisy listening conditions relies on an interplay of semantic regions and concurrent inhibition of cognitive control regions when semantic cues are available.
    Type of Medium: Online Resource
    ISSN: 1065-9471 , 1097-0193
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1492703-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2020
    In:  Human Brain Mapping Vol. 41, No. 7 ( 2020-05), p. 1842-1858
    In: Human Brain Mapping, Wiley, Vol. 41, No. 7 ( 2020-05), p. 1842-1858
    Abstract: Intonation, the modulation of pitch in speech, is a crucial aspect of language that is processed in right‐hemispheric regions, beyond the classical left‐hemispheric language system. Whether or not this notion generalises across languages remains, however, unclear. Particularly, tonal languages are an interesting test case because of the dual linguistic function of pitch that conveys lexical meaning in form of tone, in addition to intonation. To date, only few studies have explored how intonation is processed in tonal languages, how this compares to tone and between tonal and non‐tonal language speakers. The present fMRI study addressed these questions by testing Mandarin and German speakers with Mandarin material. Both groups categorised mono‐syllabic Mandarin words in terms of intonation, tone, and voice gender. Systematic comparisons of brain activity of the two groups between the three tasks showed large cross‐linguistic commonalities in the neural processing of intonation in left fronto‐parietal, right frontal, and bilateral cingulo‐opercular regions. These areas are associated with general phonological, specific prosodic, and controlled categorical decision‐making processes, respectively. Tone processing overlapped with intonation processing in left fronto‐parietal areas, in both groups, but evoked additional activity in bilateral temporo‐parietal semantic regions and subcortical areas in Mandarin speakers only. Together, these findings confirm cross‐linguistic commonalities in the neural implementation of intonation processing but dissociations for semantic processing of tone only in tonal language speakers.
    Type of Medium: Online Resource
    ISSN: 1065-9471 , 1097-0193
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1492703-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Human Brain Mapping Vol. 42, No. 1 ( 2021-01), p. 161-174
    In: Human Brain Mapping, Wiley, Vol. 42, No. 1 ( 2021-01), p. 161-174
    Abstract: Language comprehension depends on tight functional interactions between distributed brain regions. While these interactions are established for semantic and syntactic processes, the functional network of speech intonation – the linguistic variation of pitch – has been scarcely defined. Particularly little is known about intonation in tonal languages, in which pitch not only serves intonation but also expresses meaning via lexical tones. The present study used psychophysiological interaction analyses of functional magnetic resonance imaging data to characterise the neural networks underlying intonation and tone processing in native Mandarin Chinese speakers. Participants categorised either intonation or tone of monosyllabic Mandarin words that gradually varied between statement and question and between Tone 2 and Tone 4. Intonation processing induced bilateral fronto‐temporal activity and increased functional connectivity between left inferior frontal gyrus and bilateral temporal regions, likely linking auditory perception and labelling of intonation categories in a phonological network. Tone processing induced bilateral temporal activity, associated with the auditory representation of tonal (phonemic) categories. Together, the present data demonstrate the breadth of the functional intonation network in a tonal language including higher‐level phonological processes in addition to auditory representations common to both intonation and tone.
    Type of Medium: Online Resource
    ISSN: 1065-9471 , 1097-0193
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1492703-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Human Brain Mapping Vol. 43, No. 3 ( 2022-02-15), p. 1157-1173
    In: Human Brain Mapping, Wiley, Vol. 43, No. 3 ( 2022-02-15), p. 1157-1173
    Abstract: Noninvasive brain stimulation (NIBS) allows to actively and noninvasively modulate brain function. Aside from inhibiting specific processes, NIBS may also enhance cognitive functions, which might be used for the prevention and intervention of learning disabilities such as dyslexia. However, despite the growing interest in modulating learning abilities, a comprehensive, up‐to‐date review synthesizing NIBS studies with dyslexics is missing. Here, we fill this gap and elucidate the potential of NIBS as treatment option in dyslexia. The findings of the 15 included studies suggest that repeated sessions of reading training combined with different NIBS protocols may induce long‐lasting improvements of reading performance in child and adult dyslexics, opening promising avenues for future research. In particular, the “classical” reading areas seem to be most successfully modulated through NIBS, and facilitatory protocols can improve various reading‐related subprocesses. Moreover, we emphasize the need to further explore the potential to modulate auditory cortex function as a preintervention and intervention approach for affected children, for example, to avoid the development of auditory and phonological difficulties at the core of dyslexia. Finally, we outline how future studies may increase our understanding of the neurobiological basis of NIBS‐induced improvements in dyslexia.
    Type of Medium: Online Resource
    ISSN: 1065-9471 , 1097-0193
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1492703-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Human Brain Mapping, Wiley, Vol. 44, No. 2 ( 2023-02), p. 585-598
    Abstract: Auditory sentence comprehension involves processing content (semantics), grammar (syntax), and intonation (prosody). The left inferior frontal gyrus (IFG) is involved in sentence comprehension guided by these different cues, with neuroimaging studies preferentially locating syntactic and semantic processing in separate IFG subregions. However, this regional specialisation has not been confirmed with a neurostimulation method. Consequently, the causal role of such a specialisation remains unclear. This study probed the role of the posterior IFG (pIFG) for syntactic processing and the anterior IFG (aIFG) for semantic processing with repetitive transcranial magnetic stimulation (rTMS) in a task that required the interpretation of the sentence's prosodic realisation. Healthy participants performed a sentence completion task with syntactic and semantic decisions, while receiving 10 Hz rTMS over either left aIFG, pIFG, or vertex (control). Initial behavioural analyses showed an inhibitory effect on accuracy without task‐specificity. However, electric field simulations revealed differential effects for both subregions. In the aIFG, stronger stimulation led to slower semantic processing, with no effect of pIFG stimulation. In contrast, we found a facilitatory effect on syntactic processing in both aIFG and pIFG, where higher stimulation strength was related to faster responses. Our results provide first evidence for the functional relevance of left aIFG in semantic processing guided by intonation. The stimulation effect on syntactic responses emphasises the importance of the IFG for syntax processing, without supporting the hypothesis of a pIFG‐specific involvement. Together, the results support the notion of functionally specialised IFG subregions for diverse but fundamental cues for language processing.
    Type of Medium: Online Resource
    ISSN: 1065-9471 , 1097-0193
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 1492703-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...