GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Trans Tech Publications, Ltd.  (2)
  • 2020-2024  (2)
Material
Publisher
  • Trans Tech Publications, Ltd.  (2)
Language
Years
  • 2020-2024  (2)
Year
  • 1
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2023
    In:  Materials Science Forum Vol. 1088 ( 2023-05-18), p. 25-29
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 1088 ( 2023-05-18), p. 25-29
    Abstract: High purity copper and copper alloy targets are the key supporting materials for the interconnection of integrated circuits in advanced processes. In this article, the chemical composition and microstructure of Cu-0.6wt%Mn alloy were characterized by means of Glow Discharge Mass Spectrometry, Inductive Coupled Plasma Emission Spectrometer, Optical Microscope and Scanning Electron Microscope. The results show that the total impurity content for Cu-0.69wt%Mn alloy is less than 1 ppm. The three key impurities contents of Ag and Fe and Si could meet the requirement of electronic materials for integrated circuits by use of high purity raw material and appropriate melting and casting methods. Mn content at different positions along the diameter direction fluctuates slightly between 0.66~0.72 wt%, and completely distributed uniformly in the Cu matrix without any trace of aggregation. Due to the influence of raw materials and casting technology, defects such as porosity and carbon inclusion are easy to appear in as-cast microstructure. Therefore, it is necessary to develop new casting mould and casting processing to improve the quality of ingots.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2023
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Trans Tech Publications, Ltd. ; 2021
    In:  Materials Science Forum Vol. 1035 ( 2021-06-22), p. 787-791
    In: Materials Science Forum, Trans Tech Publications, Ltd., Vol. 1035 ( 2021-06-22), p. 787-791
    Abstract: The FEM (finite element method) simulation was used to study the diffusion bonding deformation of high purity tungsten target. The influence of different welding structure, bonding temperature on the deformation of the final high-purity tungsten target was systematically studied. Meanwhile, some microscopic properties of tungsten target were developed, such as internal stress size and distributions, strain size and distributions. Finally, physical experiments are used to verify numerical simulation results. The results show that the method of adding an intermediate layer can release the residual stress between the high-purity target and back plate. The bonding stress of high-purity tungsten target is mainly concentrated with the tungsten target and the intermediate layer in between, which is easy to fail during the later leveling process. Small deformation of bonding tungsten target can be obtained by low diffusion bonding temperature.
    Type of Medium: Online Resource
    ISSN: 1662-9752
    URL: Issue
    Language: Unknown
    Publisher: Trans Tech Publications, Ltd.
    Publication Date: 2021
    detail.hit.zdb_id: 2047372-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...