GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Company of Biologists  (3)
  • 2020-2024  (3)
Material
Publisher
  • The Company of Biologists  (3)
Language
Years
  • 2020-2024  (3)
Year
  • 1
    Online Resource
    Online Resource
    The Company of Biologists ; 2023
    In:  Journal of Experimental Biology Vol. 226, No. 9 ( 2023-05-01)
    In: Journal of Experimental Biology, The Company of Biologists, Vol. 226, No. 9 ( 2023-05-01)
    Abstract: Journal of Experimental Biology has a long history of reporting research discoveries on animal echolocation, the subject of this Centenary Review. Echolocating animals emit intense sound pulses and process echoes to localize objects in dynamic soundscapes. More than 1100 species of bats and 70 species of toothed whales rely on echolocation to operate in aerial and aquatic environments, respectively. The need to mitigate acoustic clutter and ambient noise is common to both aerial and aquatic echolocating animals, resulting in convergence of many echolocation features, such as directional sound emission and hearing, and decreased pulse intervals and sound intensity during target approach. The physics of sound transmission in air and underwater constrains the production, detection and localization of sonar signals, resulting in differences in response times to initiate prey interception by aerial and aquatic echolocating animals. Anti-predator behavioral responses of prey pursued by echolocating animals affect behavioral foraging strategies in air and underwater. For example, many insect prey can detect and react to bat echolocation sounds, whereas most fish and squid are unresponsive to toothed whale signals, but can instead sense water movements generated by an approaching predator. These differences have implications for how bats and toothed whales hunt using echolocation. Here, we consider the behaviors used by echolocating mammals to (1) track and intercept moving prey equipped with predator detectors, (2) interrogate dynamic sonar scenes and (3) exploit visual and passive acoustic stimuli. Similarities and differences in animal sonar behaviors underwater and in air point to open research questions that are ripe for exploration.
    Type of Medium: Online Resource
    ISSN: 0022-0949 , 1477-9145
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2023
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Company of Biologists ; 2020
    In:  Journal of Experimental Biology
    In: Journal of Experimental Biology, The Company of Biologists
    Abstract: Diving birds spend up to several minutes underwater during pursuit-dive foraging. To find and capture prey, like fish and squid, they probably need several senses in addition to vision. Cormorants, very efficient predators of fishes, have unexpectedly low visual acuity underwater. So, underwater hearing may be an important sense, as for other diving animals. We measured auditory thresholds and eardrum vibrations in air and underwater of the great cormorant (Phalacrocorax carbo sinensis). Wild-caught cormorant fledglings were anesthetized, and their auditory brainstem response (ABR) and eardrum vibrations to clicks and tone bursts were measured, first in an anechoic box in air and then in a large water-filled tank, with their head and ears submerged 10 cm below the surface. Both the ABR-response waveshape and latency, as well as the ABR-thresholds, measured in units of sound pressure, were similar in air and water. The best average sound pressure sensitivity was found at 1 kHz, both in air (53 dB re. 20 µPa) and underwater (58 dB re. 20 µPa). When thresholds were compared in units of intensity, however, the sensitivity underwater was higher than in air. Eardrum vibration amplitudes in both media reflected the ABR-threshold curves. These results suggest that cormorants have in-air hearing abilities comparable to similar-sized diving birds, and that their underwater hearing sensitivity is at least as good as their aerial sensitivity. This together with the morphology of the outer ear (collapsible meatus) and middle ear (thickened eardrum), suggest that cormorants may have anatomical and physiological adaptations for amphibious hearing.
    Type of Medium: Online Resource
    ISSN: 1477-9145 , 0022-0949
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2020
    detail.hit.zdb_id: 1482461-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    The Company of Biologists ; 2022
    In:  Biology Open Vol. 11, No. 11 ( 2022-11-01)
    In: Biology Open, The Company of Biologists, Vol. 11, No. 11 ( 2022-11-01)
    Abstract: Penguins are known to react to underwater noise, but it is unknown if they make use of sound cues while diving. We tested whether captive gentoo penguins (Pygoscelis papua) can pair underwater sounds with food through Pavlovian conditioning. Two seconds after an underwater sound (a 1-4 kHz sweep with a received level of 130 dB re 1 µPa RMS) was played back to one or two unidentifiable penguins, a dead fish was flushed into the water close to the underwater sound source. After 8 weeks of conditioning, one or more individual penguins approached the sound source after sound emission in 78.3% out of 230 trials. In 43 intermixed control trials with no sound preceding the fish, the penguins did not show any reaction in the pre-flush period. In an additional experiment, three identified penguins reacted to the sound in 66.7-100% out of 30 trials, with 0% reactions in five intermixed control trials. Our experiments demonstrate that gentoo penguins can be conditioned to underwater sound and that they associate underwater sounds with food. It is possible that gentoos, as well as other species of penguins, use sound cues while foraging. This may explain why penguins have been observed to react negatively to anthropogenic noise.
    Type of Medium: Online Resource
    ISSN: 2046-6390
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2022
    detail.hit.zdb_id: 2632264-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...