GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-09-28
    Description: This article reviews extensive geophysical survey data, ocean drilling results and long-term seafloor monitoring that constrain the distribution and concentration of gas hydrates within the accretionary prism of the northern Cascadia subduction margin, located offshore Vancouver Island in Canada. Seismic surveys and geologic studies conducted since the 1980s have mapped the bottom simulating reflector (BSR), detected gas hydrate occurrence and estimated gas hydrate and free gas concentrations. Additional constraints were obtained from seafloor-towed, controlled-source electromagnetic surveying. A component of these studies has been the examination of low-temperature seafloor vents and seeps that emit gas and fluids into the ocean. These features are identified seismically as chimney-like zones of reduced acoustic reflectivity within the sediment stratigraphy, functioning as conduits for gas and fluid migration from below the BSR to the seafloor. Gas hydrates have been recovered from the seafloor and from sediment cores at vent sites, mostly in massive (nodular) form and as a vein-like fracture filling. The Ocean Networks Canada cabled NEPTUNE observatory has gathered extensive continuous, long-term observations on gas hydrate dynamics at the seafloor and in boreholes at two nodes on the continental slope featuring high gas hydrate concentrations. Measurements taken at the observatory include a time-series of gas bubble emission rates, changes in the near-seafloor electromagnetic structure and seafloor compliance linked to gas hydrate formation and dissociation. Two Integrated Ocean Drilling Program (IODP) expeditions collected cores, measured downhole properties and deployed downhole instruments within the central accretionary prism. At IODP Site U1364, pore pressures are being monitored above and below the base of the gas hydrate stability zone at a slope setting using an “Advanced Circulation Obviation Retrofit Kit” (A-CORK). Downhole pore pressures, temperatures and electrical resistivities also are being monitored at IODP Site U1416 using the “Simple Cabled Instrument for Measuring Parameters In Situ” (SCIMPI) tool at a vent site from near-seafloor to just above the base of the gas hydrate stability zone.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Sediment geotechnical properties are an important component of geohazard analyses and studies on submarine slope failures on continental margins. The northern Cascadia margin is a region of repeated subduction earthquakes and related geohazards including devastating tsunamis. Despite several drilling campaigns at this margin mostly for gas hydrate studies, sediment geotechnical properties are lacking to date. We therefore investigated a set of 20 half-round samples from four drill sites of Integrated Ocean Drilling Program (IODP) Expedition 311 along a margin-perpendicular transect. Samples were analysed for Atterberg properties (liquid limit, plasticity limit, plasticity index) and consolidation state (pre-consolidation stress, over-consolidation ratio, initial void ratio and compression index). Results of these parameters are in good agreement with similar studies at the southern Cascadia margin from Ocean Drilling Program (ODP) Leg 204 and are regarded robust, despite the long time-span between sample recovery in 2005 and our analyses. Individual results are interpreted at each of the drill sites and reflect the overall tectonic state of the location within the accretionary prism. An interplay of site-specific tectonic forcing, including thrust faulting, uplift, folding, and erosion appears to govern the depth-dependent consolidation state of the sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: During trip out of the drill string at the end of a drilling operation (logging while tripping) borehole temperatures can be measured without the need for additional operational time. A simple interpretation of the measured borehole temperatures is difficult due to the interfering influences of the drilling operations, mainly due to flushing the borehole during drilling. In this study, we present borehole temperature data from drilling campaigns with the sea floor drill rig MARUM-MeBo200 at the Danube Deep Sea Fan (Black Sea) and west of Taiwan (South China Sea). The temperature measurements were conducted with a PT1000 temperature sensor which is integrated in a memory acoustic borehole logging tool. We developed a modeling approach in order to simulate the drilling perturbations and subsequent evolution of the temperature field within the borehole. By fitting the model data to the measured time dependent temperature depth profiles, we estimated the undisturbed heat flux at the drill sites. This study shows that knowledge of the pattern of drilling operations with alternating phases of drilling/flushing and drill string handling is crucial for comparing temperatures measured during logging while tripping and simulated temperatures.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...