GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Society of Exploration Geophysicists  (1)
  • 2020-2024  (1)
Material
Publisher
  • Society of Exploration Geophysicists  (1)
Person/Organisation
Language
Years
  • 2020-2024  (1)
Year
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Society of Exploration Geophysicists ; 2020
    In:  GEOPHYSICS Vol. 85, No. 5 ( 2020-09-01), p. V385-V396
    In: GEOPHYSICS, Society of Exploration Geophysicists, Vol. 85, No. 5 ( 2020-09-01), p. V385-V396
    Abstract: Spectral decomposition has been widely used to detect frequency-dependent anomalies associated with hydrocarbons. By ignoring the time-variant feature of the frequency content of individual reflected wavelets, we have adopted a sparse time-frequency spectrum and developed a matching pursuit-based sparse spectral analysis (MP-SSA) method to estimate the sparse time-frequency representation of the seismic data. Further, we evaluate a generalized nonstationary convolution model concerning propagation attenuation and frequency-dependent reflectivity, and we mathematically evaluate the sparse time-frequency spectrum of the nonstationary seismic data as being equal to the product of the Fourier spectrum of the source wavelet, frequency-dependent reflection coefficient, and the cumulative attenuation during seismic wave propagation. Therefore, the reflectivity spectrum, which is a combination of the frequency-dependent reflectivity and the propagation attenuation, can be determined by dividing the sparse time-frequency spectrum of the seismic data by the Fourier spectrum of the source wavelet. Application of the matching pursuit-based decomposition methods to synthetic nonstationary convolutional data illustrates that the adopted MP-SSA spectrum shows a higher time resolution than the matching pursuit-based Wigner-Ville distribution and the matching pursuit-based instantaneous spectral analysis spectra. Notably, the MP-SSA method can avoid spectral smearing, which may introduce distortions to the frequency-dependent anomaly estimation. Application of the amplitude versus frequency analysis based on MP-SSA to field data illustrates the potential of using the sparse reflectivity spectral intercept and gradient to detect the hydrocarbon reservoirs.
    Type of Medium: Online Resource
    ISSN: 0016-8033 , 1942-2156
    RVK:
    Language: English
    Publisher: Society of Exploration Geophysicists
    Publication Date: 2020
    detail.hit.zdb_id: 2033021-2
    detail.hit.zdb_id: 2184-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...