GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Scientific Societies  (3)
  • 2020-2024  (3)
  • 1
    In: Plant Disease, Scientific Societies, Vol. 105, No. 12 ( 2021-12-01), p. 4006-4013
    Abstract: The large-scale deployment of resistance to Phytophthora sojae (Rps) genes in soybean has led to the rapid evolution of the virulence profile (pathotype) of P. sojae populations. Determining the pathotypes of P. sojae isolates is important in selecting soybean germplasm carrying the proper Rps, but this process is fastidious and requires specific expertise. In this work, we used a molecular assay to assess the pathotypes of P. sojae isolates obtained throughout the provinces of Québec, Ontario, and Manitoba. In preliminary assays, the molecular tool showed equivalent prediction of the pathotypes as a phenotyping assay and proved to be much faster to apply while eliminating intermediate values. Upon analysis of nearly 300 isolates, 24 different pathotypes were detected in Québec and Ontario, compared with only eight in Manitoba, where soybean culture is more recent. Pathotypes 1a, 1c, and 1d was predominant in Québec, while 1a, 1b, 1c, 1d, and 1k pathotypes were the most common in Manitoba. Overall, the results showed that 98 and 86% of the isolates carried pathotype 1a or 1c, respectively, suggesting that Rps1a and Rps1c were no longer effective in Canada. Based on the history of soybean varieties used in surveyed fields, it was found that 84% of them contained Rps genes that were no longer resistant against the pathotypes of the isolates found in the fields. While highlighting an easier and more precise option to assess pathotypes, this study presents the first pan-Canadian survey of P. sojae and stresses the importance of carefully managing the declining sources of resistance.
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2021
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Scientific Societies ; 2021
    In:  Plant Disease Vol. 105, No. 2 ( 2021-02), p. 392-399
    In: Plant Disease, Scientific Societies, Vol. 105, No. 2 ( 2021-02), p. 392-399
    Abstract: Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum, is a damaging seed-transmitted disease of dry beans that causes reduced seed quality and yield. Seed-to-seedling transmission of C. lindemuthianum has been documented as high as 15% in asymptomatic seeds under greenhouse conditions. Increasing pathogen colonization in seeds has been correlated with increasing anthracnose seed symptoms via quantitative PCR (qPCR), but stem colonization has not been quantified. Previous studies also have characterized seed yield and quality losses caused by planting C. lindemuthianum–infected seeds, but none evaluated the effect of growing asymptomatic seeds on disease and plant development under field conditions. A real-time qPCR assay was developed in this study and used to detect C. lindemuthianum in the stems of seedlings as early as 15 days after planting. Field trials measured the seed-to-seedling transmission of C. lindemuthianum across levels of anthracnose symptoms in seeds ranging from healthy to severely discolored. Results from these two field trials indicated that emergence and yield decreased and foliar symptoms, pathogen detection, and incidence of symptoms on progeny seeds increased as the severity of infection in planted seeds increased. In both years, planting asymptomatic seeds resulted in higher anthracnose severity than planting healthy seeds. Yield, seed weight, and incidence of symptoms on progeny seeds were not higher in asymptomatic seeds than in healthy seeds in 2014, when moderate disease pressure was observed. However, these factors were significantly different in 2015, when anthracnose severity was driven up to 75% by conducive weather conditions. This serves as a strong warning to growers that planting seed grown in a field where anthracnose was present, even if those seeds are asymptomatic, can result in yield and quality losses. Planting certified dry bean seed is always recommended.
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2021
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Plant Disease, Scientific Societies, Vol. 104, No. 3 ( 2020-03), p. 780-786
    Abstract: Virus-like disease symptoms consisting of leaf cupping, shortened internodes, and overall stunting were observed in commercial cotton fields in Alabama in 2017 to 2018. To determine the complete genome sequence of the suspected causal polerovirus, symptomatic leaf samples were collected in Macon County, Alabama, and subjected to Illumina RNA sequencing. Based on BLASTn analysis, the Illumina contig of 5,771 nt shared the highest nucleotide identity (approximately 95%) with members of the species Cotton leafroll dwarf virus (CLRDV) (genus Polerovirus; family Luteoviridae) from Argentina and Brazil. The full-length viral genome sequence was verified by reverse transcription (RT)-PCR amplification, cloning, and Sanger sequencing. The complete CLRDV genome of 5,865 nt in length shared 94.8 to 95.2% nucleotide identity with six previously reported CLRDV isolates. The genome of the CLRDV isolate amplified from Alabama samples (CLRDV-AL) has seven predicted open reading frames (ORFs). Viral proteins 1 to 5 (P1 to P5) shared 91.9 to 99.5% amino acid identity with the six CLRDV isolates from Argentina and Brazil. However, P0, the suppressor of host gene silencing, shared 82.4 to 88.5% pairwise amino acid identity with the latter CLRDV isolates. Phylogenetic analysis of the seven full-length CLRDV genomes resolved three sister clades: CLRDV-AL, CLRDV-typical, and CLRDV-atypical, respectively. Three recombination events were detected by the recombination detection program among the seven CLRDV isolates with breakpoints occurring along the genome. Pairwise nucleotide identity comparisons of ORF0 sequences for the three CLRDV-AL field isolates indicated that they were 〉 99% identical, suggesting that this previously unknown CLRDV genotype represents a single introduction to Alabama.
    Type of Medium: Online Resource
    ISSN: 0191-2917 , 1943-7692
    Language: English
    Publisher: Scientific Societies
    Publication Date: 2020
    detail.hit.zdb_id: 2042679-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...