GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • San Diego :Elsevier Science & Technology,  (1)
  • 2020-2024  (1)
Document type
Publisher
Language
Years
  • 2020-2024  (1)
Year
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Machine learning. ; Medical informatics. ; Artificial intelligence-Medical applications. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (460 pages)
    Edition: 1st ed.
    ISBN: 9780128217818
    Series Statement: Intelligent Data-Centric Systems Series
    DDC: 610.28563
    Language: English
    Note: Intro -- Machine Learning, Big Data, and IoT for Medical Informatics -- Copyright -- Contents -- Contributors -- Preface -- Outline of the book and chapter synopses -- Special acknowledgments -- Chapter 1: Predictive analytics and machine learning for medical informatics: A survey of tasks and techniques -- 1. Introduction: Predictive analytics for medical informatics -- 1.1. Overview: Goals of machine learning -- 1.2. Current state of practice -- 1.3. Key task definitions -- 1.3.1. Diagnosis -- 1.3.2. Predictive analytics -- 1.3.3. Therapy recommendation -- 1.3.4. Automation of treatment -- 1.3.5. Other tasks in integrative medicine -- 1.4. Open research problems -- 1.4.1. Learning for classification and regression -- 1.4.2. Learning to act: Control and planning -- 1.4.3. Toward greater autonomy: Active learning and self-supervision -- 2. Background -- 2.1. Diagnosis -- 2.1.1. Diagnostic classification and regression tasks -- 2.1.2. Diagnostic policy-learning tasks -- 2.1.3. Active, transfer, and self-supervised learning -- 2.2. Predictive analytics -- 2.2.1. Prediction by classification and regression -- 2.2.2. Learning to predict from reinforcements and by supervision -- 2.2.3. Transfer learning in prediction -- 2.3. Therapy recommendation -- 2.3.1. Supervised therapy recommender systems -- 2.4. Automation of treatment -- 2.4.1. Classification and regression-based tasks -- 2.4.2. RL for automation -- 2.4.3. Active learning in automation -- 2.5. Integrating medical informatics and health informatics -- 2.5.1. Classification and regression tasks in HMI -- 2.5.2. Reinforcement learning for HMI -- 2.5.3. Self-supervised, transfer, and active learning in HMI -- 3. Techniques for machine learning -- 3.1. Supervised, unsupervised, and semisupervised learning -- 3.1.1. Shallow -- 3.1.2. Deep -- 3.2. Reinforcement learning -- 3.2.1. Traditional. , 3.2.2. Deep RL -- 3.3. Self-supervised, transfer, and active learning -- 3.3.1. Traditional -- 3.3.2. Deep -- 4. Applications -- 4.1. Test beds for diagnosis and prognosis -- 4.1.1. New test beds -- 4.2. Test beds for therapy recommendation and automation -- 4.2.1. Prescriptions -- 4.2.2. Surgery -- 5. Experimental results -- 5.1. Test bed -- 5.2. Results and discussion -- 6. Conclusion: Machine learning for computational medicine -- 6.1. Frontiers: Preclinical, translational, and clinical -- 6.2. Toward the future: Learning and medical automation -- References -- Chapter 2: Geolocation-aware IoT and cloud-fog-based solutions for healthcare -- 1. Introduction -- 2. Related work -- 2.1. Health monitoring system with cloud computing -- 2.2. Health monitoring system with fog computing -- 2.3. Health monitoring system with cloud-fog computing -- 3. Proposed framework -- 3.1. Health data analysis -- 3.2. Geospatial analysis for medical facility -- 3.2.1. Overlay analysis to obtain nearest medical facilities -- 3.2.2. Shortest path to reach nearest medical centers -- 3.3. Delay and power consumption calculation -- 4. Performance evaluation -- 5. Conclusion and future work -- References -- Chapter 3: Machine learning vulnerability in medical imaging -- 1. Introduction -- 2. Computer vision -- 3. Adversarial computer vision -- 4. Methods to produce adversarial examples -- 5. Adversarial attacks -- 6. Adversarial defensive methods -- 7. Adversarial computer vision in medical imaging -- 8. Adversarial examples: How to generate? -- 9. Conclusion -- Acknowledgment -- References -- Chapter 4: Skull stripping and tumor detection using 3D U-Net -- 1. Introduction -- 1.1. Previous work -- 2. Overview of U-net architecture -- 2.1. 3D U-net -- 2.1.1. Batch normalization -- 2.1.2. Activation function -- 2.1.3. Pooling -- 2.1.4. Padding -- 2.1.5. Optimizer. , 3. Materials and methods -- 3.1. Dataset -- 3.2. Implementation -- 4. Results -- 4.1. Experimental result -- 4.1.1. Dice coefficient -- 4.1.2. Accuracy -- 4.1.3. Intersection over Union (IoU) -- 4.2. Quantitative result -- 4.3. Qualitative result -- 5. Conclusion -- References -- Chapter 5: Cross color dominant deep autoencoder for quality enhancement of laparoscopic video: A hybrid deep learning an -- 1. Introduction -- 2. Range-domain filtering -- 3. Cross color dominant deep autoencoder (C2D2A) leveraging color spareness and saliency -- 3.1. Evolution of DCM through C2D2A -- 3.2. Inclusion of DCM into principal flow of bilateral filtering -- 4. Experimental results -- 5. Conclusion -- Acknowledgments -- References -- Chapter 6: Estimating the respiratory rate from ECG and PPG using machine learning techniques -- 1. Introduction -- 1.1. Motivation -- 1.2. Background -- 2. Related work -- 3. Methods -- 3.1. Data -- 3.2. Steps -- 3.3. RR signal extraction -- 3.4. Machine learning -- 4. Experimental results -- 5. Discussion and conclusion -- Acknowledgments -- References -- Chapter 7: Machine learning-enabled Internet of Things for medical informatics -- 1. Introduction -- 1.1. Healthcare Internet of Things -- 1.1.1. H-IoT architecture -- 1.1.2. Three-tier H-IoT architecture -- 2. Applications and challenges of H-IoT -- 2.1. Applications of H-IoT -- 2.1.1. Fitness tracking -- 2.1.2. Neurological disorders -- 2.1.3. Cardio vascular disorders -- 2.1.4. Ambient-assisted living -- 2.2. Challenges of H-IoT system -- 2.2.1. QoS improvement -- 2.2.2. Scalability challenges -- 3. Machine learning -- 3.1. Machine learning advancements at the application level of H-IoT -- 3.2. Machine learning advancements at network level of H-IoT -- 4. Future research directions -- 4.1. Novel applications of ML in H-IoT -- 4.1.1. Real-time monitoring and treatment. , 4.1.2. Training for professionals -- 4.1.3. Advanced prosthetics -- 4.2. Research opportunities in network management -- 4.2.1. Channel access -- 4.2.2. Dynamic data management -- 4.2.3. Fully autonomous operation -- 4.2.4. Security -- 5. Conclusion -- References -- Chapter 8: Edge detection-based segmentation for detecting skin lesions -- 1. Introduction -- 2. Previous works -- 3. Materials and methods -- 3.1. Elitist-Jaya algorithm -- 3.2. Otsus method -- 4. Proposed method -- 4.1. Image preprocessing -- 4.2. Edge detection -- 5. Experiment and results -- 5.1. Dataset -- 5.2. Evaluation metrics -- 5.3. Results and discussion -- 5.4. Statistical analysis -- 6. Conclusion -- References -- Chapter 9: A review of deep learning approaches in glove-based gesture classification -- 1. Introduction -- 2. Data gloves -- 2.1. Early and commercial data gloves -- 2.2. Sensing mechanism in data gloves -- 2.2.1. Fiber-optic sensors -- 2.2.2. Conductive strain sensors -- 2.2.3. Inertial sensors -- 3. Gesture taxonomies -- 4. Gesture classification -- 4.1. Classical machine learning algorithms -- 4.1.1. K-nearest neighbor -- 4.1.2. Support vector machine (SVM) -- 4.1.3. Decision tree -- 4.1.4. Artificial neural network (ANN) -- 4.1.5. Probabilistic neural network (PNN) -- 4.2. Glove-based gesture classification with classical machine learning algorithms -- 4.3. Deep learning -- 4.3.1. Convolutional neural network (CNN) -- 4.3.2. Recurrent neural network (RNN) -- 4.4. Glove-based gesture classification using deep learning -- 5. Discussion and future trends -- 6. Conclusion -- References -- Chapter 10: An ensemble approach for evaluating the cognitive performance of human population at high altitude -- 1. Introduction -- 2. Methodology -- 2.1. Data collection -- 2.2. Data processing and feature selection -- 2.3. Differential expression analyses. , 2.4. Association rule mining -- 2.5. Experimental set-up -- 3. Results and discussion -- 3.1. Differential analyses-Cognitive and clinical features -- 3.2. Discovered associative rules -- 3.3. Discussion -- 4. Future opportunities -- 5. Conclusions -- Acknowledgment -- References -- Chapter 11: Machine learning in expert systems for disease diagnostics in human healthcare -- 1. Introduction -- 2. Types of expert systems -- 3. Components of an expert system -- 4. Techniques used in expert systems of medical diagnosis -- 5. Existing expert systems -- 6. Case studies -- 6.1. Cancer diagnosis using rule-based expert system -- 6.2. Alzheimers diagnosis using fuzzy-based expert systems -- 6.2.1. Algorithm of fuzzy inference system -- 7. Significance and novelty of expert systems -- 8. Limitations of expert systems -- 9. Conclusion -- Acknowledgment -- References -- Chapter 12: An entropy-based hybrid feature selection approach for medical datasets -- 1. Introduction -- 1.1. Deficiencies of the existing models -- 1.2. Chapter organization -- 2. Background of the present research -- 2.1. Feature selection (FS) -- 3. Methodology -- 3.1. The entropy based feature selection approach -- 3.1.1. Equi-class distribution of instances -- 3.1.2. Splitting the dataset D into subsets: D1, D2, and D3 -- 4. Experiment and experimental results -- 4.1. Experiment using suggested feature selection approach -- 5. Discussion -- 5.1. Performance analysis of the suggested feature selection approach -- 6. Conclusions and future works -- Conflict of interest -- Appendix A -- A.1. Explanation on entropy-based feature extraction approach -- References -- Chapter 13: Machine learning for optimizing healthcare resources -- 1. Introduction -- 2. The state of the art -- 2.1. Resource management -- 2.2. Impact on peoples health -- 2.3. Exit strategies. , 3. Machine learning for health data analysis.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...