GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (1)
  • 2020-2024  (1)
Material
Publisher
  • Proceedings of the National Academy of Sciences  (1)
Language
Years
  • 2020-2024  (1)
Year
Subjects(RVK)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 22 ( 2021-06)
    Abstract: C-natriuretic peptide (CNP) and its receptor guanylyl cyclase, natriuretic peptide receptor 2 (NPR2), are key regulators of cyclic guanosine monophosphate (cGMP) homeostasis. The CNP-NPR2-cGMP signaling cascade plays an important role in the progression of oocyte meiosis, which is essential for fertility in female mammals. In preovulatory ovarian follicles, the luteinizing hormone (LH)-induced decrease in CNP and its encoding messenger RNA (mRNA) natriuretic peptide precursor C ( Nppc ) are a prerequisite for oocyte meiotic resumption. However, it has never been determined how LH decreases CNP/ Nppc . In the present study, we identified that tristetraprolin (TTP), also known as zinc finger protein 36 (ZFP36), a ubiquitously expressed mRNA-destabilizing protein, is the critical mechanism that underlies the LH-induced decrease in Nppc mRNA. Zfp36 mRNA was transiently up-regulated in mural granulosa cells (MGCs) in response to the LH surge. Loss- and gain-of-function analyses indicated that TTP is required for Nppc mRNA degradation in preovulatory MGCs by targeting the rare noncanonical AU-rich element harbored in the Nppc 3′ UTR. Moreover, MGC-specific knockout of Zfp36 , as well as lentivirus-mediated knockdown in vivo, impaired the LH/hCG-induced Nppc mRNA decline and oocyte meiotic resumption. Furthermore, we found that LH/hCG activates Zfp36 /TTP expression through the EGFR-ERK1/2–dependent pathway. Our findings reveal a functional role of TTP-induced mRNA degradation, a global posttranscriptional regulation mechanism, in orchestrating the progression of oocyte meiosis. We also provided a mechanism for understanding CNP-dependent cGMP homeostasis in diverse cellular processes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...