GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (3)
  • 2020-2024  (3)
Material
Publisher
  • Oxford University Press (OUP)  (3)
Language
Years
  • 2020-2024  (3)
Year
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  ISME Communications Vol. 3, No. 1 ( 2023-12-01)
    In: ISME Communications, Oxford University Press (OUP), Vol. 3, No. 1 ( 2023-12-01)
    Abstract: Mixotrophic and heterotrophic protists hold a key position in aquatic microbial food webs. Whereas they can account for the bulk of bacterivory in pelagic systems, the potential structuring effect of these consumers on bacterial communities is far from clear. We conducted short-term grazing experiments to test for the overall impact on bacterial community structure and possible prey preferences of phagotrophic protists. The protist taxa selected for this study include three mixotrophic flagellates, comprising two obligate- and one facultative mixotroph, and one phagoheterotrophic flagellate lacking phototrophic capacity. Bacterioplankton from seven different lakes were enriched and used to represent semi-natural prey communities. Our study demonstrated protist strain specific impacts on bacterial community composition linked to grazing. The three mixotrophs had variable impacts on bacterial communities where the two obligate mixotrophs exhibited lower grazing rates, while showing a tendency to promote higher bacterial diversity. The phagoheterotroph displayed the highest grazing rates and structured the bacterial communities via apparent selective grazing. Consistent selectivity trends were observed throughout the experiments, such as the apparent avoidance of all flagellates of Actinobacteria, and high grazing on dominant Burkholderiales taxa. However, there was no consistent “fingerprint” of mixotrophic grazing on prey communities, but the structuring impact rather seemed to depend on the trophic mode of the individual protist taxa, i.e. their dependence on phototrophy vs. phagotrophy. Our findings highlight the differential structuring impact of protist taxa on bacterial communities which may have important ecological implications, for example during periodic dominance of obligate mixotrophic bacterivores in changing lake ecosystems.
    Type of Medium: Online Resource
    ISSN: 2730-6151
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 3041786-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Journal of Plankton Research Vol. 45, No. 1 ( 2023-02-01), p. 3-14
    In: Journal of Plankton Research, Oxford University Press (OUP), Vol. 45, No. 1 ( 2023-02-01), p. 3-14
    Abstract: Zoosporic fungi of the phylum Chytridiomycota are ubiquitous parasites of phytoplankton in aquatic ecosystems, but little is known about phytoplankton defense strategies against parasitic chytrid attacks. Using a model chytrid-phytoplankton pathosystem, we experimentally tested the hypothesis that the mucilage envelope of a mucilage-forming desmid species provides protection against the parasitic chytrid Staurastromyces oculus. Mucilage-forming Staurodesmus cells were not accessible to the chytrid, whereas physical removal of the mucilage envelope rendered the same Staurodesmus sp. strain equally susceptible to chytrid infections as the original non-mucilage-forming host Staurastrum sp. Epidemic spread of the parasite only occurred in Staurastrum sp., whereas non-mucilage-bearing Staurodesmus sp. allowed for co-existence of host and parasite, and mucilage-bearing Staurodesmus sp. caused parasite extinction. In addition to the mucilage defense barrier, we also demonstrate the ability of both Staurastrum sp. and Staurodesmus sp. to resist infection by preventing chytrid development while still remaining viable and being able to reproduce and thus recover from an infection. This study extends our knowledge on phytoplankton defense traits and the functional role of mucilage in phytoplankton as a physical barrier against fungal parasites.
    Type of Medium: Online Resource
    ISSN: 0142-7873 , 1464-3774
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 756271-8
    detail.hit.zdb_id: 1474909-9
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Journal of Plankton Research Vol. 45, No. 3 ( 2023-06-03), p. 454-466
    In: Journal of Plankton Research, Oxford University Press (OUP), Vol. 45, No. 3 ( 2023-06-03), p. 454-466
    Abstract: Chytrid fungal parasites increase herbivory and dietary access to essential molecules, such as polyunsaturated fatty acids (PUFA), at the phytoplankton–zooplankton interface. Warming enhances cyanobacteria blooms and decreases algae-derived PUFA for zooplankton. Whether chytrids could support zooplankton with PUFA under global warming scenarios remains unknown. We tested the combined effect of water temperature (ambient: 18°C, heat: +6°C) and the presence of chytrids with Daphnia magna as the consumer, and Planktothrix rubescens as the main diet. We hypothesized that chytrids would support Daphnia fitness with PUFA, irrespective of water temperature. Heating was detrimental to the fitness of Daphnia when feeding solely on the Planktothrix diet. Chytrid-infected Planktothrix diet alleviated the negative impact of heat and could support Daphnia survival, somatic growth and reproduction. Carbon stable isotopes of fatty acids highlighted a ~3x more efficient n-3 than n-6 PUFA conversion by Daphnia feeding on the chytrid-infected diet, irrespective of temperature. The chytrid diet significantly increased eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6) retention in Daphnia. The EPA retention remained unaffected, while ARA retention increased in response to heat. We conclude that chytrids support pelagic ecosystem functioning under cyanobacteria blooms and global warming via chytrids-conveyed PUFA toward higher trophic levels.
    Type of Medium: Online Resource
    ISSN: 0142-7873 , 1464-3774
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 756271-8
    detail.hit.zdb_id: 1474909-9
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...