GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • 2020-2024  (3)
Material
Publisher
  • MDPI AG  (3)
Language
Years
  • 2020-2024  (3)
Year
  • 1
    In: Water, MDPI AG, Vol. 13, No. 7 ( 2021-03-26), p. 903-
    Abstract: To reduce public health hazards, greywater reuse may involve disinfection, which is often performed through chlorination. The formation of toxic disinfection by-products is a negative side-effect of chlorine’s reaction with organic matter, of which trihalomethanes (THM) are one of the most dominant (though not most toxic) groups. Greywater treatment in vertical flow constructed wetlands leads to a decrease in dissolved organic matter. We hypothesized that these dissolved organic carbon (DOC) changes would be reflected in differences in THM formation. Greywater samples, at different treatment levels (i.e., decreasing organic matter content), were exposed to 5 mg/L of chlorine for 1 h. THM formation in raw greywater samples was significantly lower than in the more treated (recirculated) samples, despite their significantly higher DO concentrations. This trend was verified in six different systems. Furthermore, this was also shown when greywater was exposed to higher chlorine doses (25 and 50 mg/L). It is suggested that the increase in THM formation for longer recirculated water is the result of two factors: competition between a higher number of reactive sites in the raw water’s organic matter, which leads to smaller THM yields, and changes in the abundance of THM formation moieties in the recirculated water’s DOC. The latter was reflected in the SUVA increase in the treated water. Overall, THM formation, following treated greywater chlorination at the lower chlorine concentration studied, is not expected to pose an environmental health risk when the water is reused for irrigation.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Water, MDPI AG, Vol. 13, No. 2 ( 2021-01-18), p. 214-
    Abstract: Reusing greywater (GW) can lower domestic water consumption. However, the GW must be treated and disinfected for securing user health. This research studied at the laboratory scale, and in flow-through setups, which are generally used in full-scale GW treatment the disinfection efficiency of the two commonly used technologies (a) chlorination and (b) low-pressure UV irradiation. The disinfection methods were studied under a commonly found range of total suspended solids (TSS; 3.9–233 mg/L) and 5-d biochemical oxygen demand (BOD5) concentrations (0–107 mg/L) as a representative/proxy of bioavailable organic matter. The negative effect of TSS began even at low concentrations ( 〈 20 mg/L) and increased consistently with increasing TSS concentrations across all the concentrations tested. On the other hand, the negative effect of BOD5 on FC inactivation was observed only when its concentration was higher than 50 mg/L. Multiple linear regression models were developed following the laboratory results, establishing a correlation between FC inactivation by either chlorination or UV irradiation and initial FC, TSS, and BOD5 concentrations. The models were validated against the results from the flow-through reactors and explained the majority of the variability in the measured FC inactivation. Conversion factors between the laboratory scales and the flow-through reactor experiments were established. These enable the prediction of the required residual chlorine concentration or the UV dose needed for an on-site flow-through reactor. This approach is valuable from both operational and research perspectives.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Water, MDPI AG, Vol. 14, No. 5 ( 2022-02-27), p. 758-
    Abstract: There is a growing body of knowledge on the persistence of antibiotic-resistant genes (ARGs) and antibiotic-resistant bacteria (ARB) in greywater and greywater treatment systems such as constructed wetlands (CWs). Our research quantified ARGs (sul1, qnrS, and blaCTXM32), class one integron (intI1), and bacterial marker (16S) in four recirculating vertical flow CWs in a small community in the Negev desert, Israel, using quantitative polymerase chain reaction (qPCR). The greywater microbial community was characterized using 16S rRNA amplicon sequencing. Results show that CWs can reduce ARG in greywater by 1–3 log, depending on the gene and the quality of the raw greywater. Community sequencing results showed that the bacterial community composition was not significantly altered after treatment and that Proteobacteria, Epsilonbacteraeota, and Bacteroidetes were the most dominant phyla before and after treatment. Pseudomonas, Citrobacter, Enterobacter, and Aeromonas were the most commonly identified genera of the extended spectrum beta lactamase (ESBL) colonies. Some of the ESBL bacteria identified have been linked to clinical infections (Acinetobacter nosocomialis, Pseudomonas fulva, Pseudomonas putida, Pseudomonas monteilii, and Roseomonas cervicalis). It is important to monitor intI1 for the potential transfer of ARGs to pathogenic bacteria.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...