GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EDP Sciences  (14)
  • 2020-2024  (14)
Material
Publisher
  • EDP Sciences  (14)
Language
Years
  • 2020-2024  (14)
Year
Subjects(RVK)
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 675 ( 2023-07), p. A154-
    Abstract: Observations of individual massive stars, super-luminous supernovae, gamma-ray bursts, and gravitational wave events involving spectacular black hole mergers indicate that the low-metallicity Universe is fundamentally different from our own Galaxy. Many transient phenomena will remain enigmatic until we achieve a firm understanding of the physics and evolution of massive stars at low metallicity ( Z ). The Hubble Space Telescope has devoted 500 orbits to observing ∼250 massive stars at low Z in the ultraviolet (UV) with the COS and STIS spectrographs under the ULLYSES programme. The complementary X-Shooting ULLYSES (XShootU) project provides an enhanced legacy value with high-quality optical and near-infrared spectra obtained with the wide-wavelength coverage X-shooter spectrograph at ESO’s Very Large Telescope. We present an overview of the XShootU project, showing that combining ULLYSES UV and XShootU optical spectra is critical for the uniform determination of stellar parameters such as effective temperature, surface gravity, luminosity, and abundances, as well as wind properties such as mass-loss rates as a function of Z . As uncertainties in stellar and wind parameters percolate into many adjacent areas of astrophysics, the data and modelling of the XShootU project is expected to be a game changer for our physical understanding of massive stars at low Z . To be able to confidently interpret James Webb Space Telescope spectra of the first stellar generations, the individual spectra of low- Z stars need to be understood, which is exactly where XShootU can deliver.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 658 ( 2022-02), p. A92-
    Abstract: Aims. Both components of the bright eclipsing binary α Dra have been resolved using long baseline interferometry and the secondary component has been shown to contribute approximately 15% of the total flux; however, a spectroscopic detection of the companion star has so far been unsuccessful. We aim for a firm spectroscopic detection of the secondary component of α Dra using state-of-the-art spectroscopic analysis methods for very high-quality spectroscopic observations. This will allow the determination of fundamental and atmospheric properties of the components in the system with high precision and accuracy. Methods. To achieve our goals, we use a combined data set from interferometry with the Navy Precision Optical Interferometer (NPOI), photometry with the TESS space observatory, and high-resolution spectroscopy with the H ERMES fibre-fed spectrograph at the La Palma observatory. We use the method of spectral disentangling to search for the contribution of a companion star in the observed composite H ERMES spectra, to separate the spectral contributions of both components, and to determine orbital elements of the α Dra system. TESS light curves are analysed in an iterative fashion with spectroscopic inference of stellar atmospheric parameters to determine fundamental stellar properties and their uncertainties. Finally, NPOI interferometric measurements are used for determination of the orbital parameters of the system and angular diameters of both binary components. Results. We report the first firm spectroscopic detection of the secondary component in α Dra and deliver disentangled spectra of both binary components. The components’ masses and radii are inferred with high precision and accuracy, and are M A  = 3.186 ± 0.044 M ⊙ , R A  = 4.932 ± 0.036 R ⊙ , and M B  = 2.431 ± 0.019 M ⊙ , R B  = 2.326 ± 0.052 R ⊙ for the primary and secondary components, respectively. Combined astrometric and spectroscopic analysis yields the semi-major axis of the system, which is ultimately used to derive the dynamical parallax of π  = 11.48 ± 0.13 mas, and the distance d  = 87.07 ± 1.03 pc to the α Dra system. Evolutionary analysis of both binary components with M ESA stellar structure and evolution models suggests the primary is an evolved post-TAMS A-type star, while the companion is a main-sequence A-type star with a convective core mass of M cc  = 0.337 ± 0.011 M ⊙ . Positions of both binary components in the Kiel- and HR-diagrams suggest a value of the convective core overshooting parameter f ov well below 0.010 H p , and we infer the age of the system to be 310 ± 25 Myr. Conclusions. The inferred near-core mixing properties of both components do not support a dependence of the convective core overshooting on the stellar mass. At the same time, the α Dra system provides extra support to hypothesise that the mass discrepancy in eclipsing spectroscopic double-lined binaries is associated with inferior atmospheric modelling of intermediate- and high-mass stars, and less so with the predictive powerof stellar structure and evolution models as to the amount of near-core mixing and mass of the convective core.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 650 ( 2021-6), p. A147-
    Abstract: Context. The evolution of the most massive stars and their upper-mass limit remain insufficiently constrained. Very massive stars are characterized by powerful winds and spectroscopically appear as hydrogen-rich Wolf–Rayet (WR) stars on the main sequence. R 144 is the visually brightest WR star in the Large Magellanic Cloud. R 144 was reported to be a binary, making it potentially the most massive binary observed yet. However, the orbit and properties of R 144 have yet to be established. Aims. Our aim is to derive the physical, atmospheric, and orbital parameters of R 144 and to interpret its evolutionary status. Methods. We performed a comprehensive spectral, photometric, orbital, and polarimetric analysis of R 144. We measured radial velocities via cross-correlation. Spectral disentangling was performed using the shift-and-add technique. We used the Potsdam Wolf–Rayet code for the spectral analysis. We further present X-ray and optical light curves of R 144, and we analyse the latter using a hybrid model combining wind eclipses and colliding winds to constrain the orbital inclination i . Results. R 144 is an eccentric ( e = 0.51) 74.2−d binary comprising two relatively evolved (age ≈2 Myr), H-rich WR stars (surface mass fraction X H ≈ 0.4). The hotter primary (WN5/6h, T * = 50 kK) and the cooler secondary (WN6/7h, T * = 45 kK) have nearly equal masses of M sin 3 i = 48.3 ± 1.8 M ⊙ and 45.5 ± 1.9 M ⊙ , respectively. The combination of low rotation and H depletion observed in the system is reproduced well by contemporary evolution models that include boosted mass loss at the upper-mass end. The systemic velocity of R 144 and its relative isolation suggest that this binary was ejected as a runaway from the neighbouring R 136 cluster. The optical light curve shows a clear orbital modulation that can be explained as a combination of two processes: excess emission stemming from wind-wind collisions and double wind eclipses. Our light-curve model implies an orbital inclination of i = 60.4 ± 1.5°, resulting in accurately constrained dynamical masses of M 1,dyn = 74 ± 4 M ⊙ and M 2,dyn = 69 ± 4 M ⊙ . Assuming that both binary components are core H-burning, these masses are difficult to reconcile with the derived luminosities (log L 1,2 ∕ L ⊙ = 6.44, 6.39), which correspond to evolutionary masses of the order of M 1, ev ≈ 110 M ⊙ and M 2, ev ≈ 100 M ⊙ . Taken at face value, our results imply that both stars have high classical Eddington factors of Γ e = 0.78 ± 0.10. If the stars are on the main sequence, their derived radii ( R * ≈ 25 R ⊙ ) suggest that they are only slightly inflated, even at this high Eddington factor. Alternatively, the stars could be core He-burning, strongly inflated from the regular size of classical WR stars (≈ 1 R ⊙ ); this scenario could help resolve the observed mass discrepancy. Conclusions. R144 is one of the few very massive extragalactic binaries ever weighed without the usage of evolution models, but poses several challenges in terms of the measured masses of its components. To advance, we strongly advocate for future polarimetric, photometric, and spectroscopic monitoring of R 144 and other very massive binaries.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    EDP Sciences ; 2023
    In:  Astronomy & Astrophysics Vol. 671 ( 2023-03), p. A121-
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 671 ( 2023-03), p. A121-
    Abstract: Context. Thanks to the high-precision photometry from space missions such as Kepler and TESS, tidal perturbations and tilting of pulsations have been detected in more than a dozen binary systems. However, only two of these were gravity-mode ( g -mode) pulsators. Aims. We aim to detect tidally perturbed g modes in additional binary systems and characterise them observationally. Methods. We performed a custom data reduction of the available Kepler and TESS photometry of a well-studied, published sample of 35 binary systems with γ Doradus ( γ Dor) pulsators. For each target, we modelled the binary signal using a sum of 100 sine waves with frequencies at orbital harmonics and measured significant pulsation frequencies in an iterative pre-whitening analysis of the residual light curve. Pulsations are labelled as tidally perturbed g modes if they are part of both period-spacing patterns and multiplets spaced by integer multiples of the orbital frequency. After visual inspection and confirmation, the properties of these targets and g modes were characterised. Results. We detect tidally perturbed g -mode pulsations for five short-period binaries that are circularised and (almost) synchronously rotating: KIC 3228863, KIC 3341457, KIC 4947528, KIC 9108579, and KIC 12785282. Tidally perturbed g modes that occur within the same star and have the same mode identification ( k , m ), are found to have near-identical relative amplitude and phase modulations, which are within their respective 1 −  σ uncertainties and also identical for the Kepler and TESS photometric passbands. By contrast, pulsations with different mode identifications ( k , m ) are found to exhibit different modulations. Moreover, the observed amplitude and phase modulations are correlated, indicating that the binary tides primarily distort the g -mode amplitudes on the stellar surface. The phase modulations are then primarily a geometric effect of the integration of the stellar flux over the visible stellar surface. All selected binaries also exhibit signal that resembles rotational modulation in the Fourier domain. In the case of KIC 3228863, this is caused by the presence of the known tertiary component, and for the other systems we hypothesise that it is caused by temperature variations on the stellar surface. Alternatively, the signal can be made up of overstable convective modes in the stellar core or may belong to the non-pulsating companion. Conclusions. While g -mode pulsation periods are known to be a direct probe of the deep interior stellar structure, the binary tides that cause the pulsation modulations are dominant in the outer stellar layers. Hence, in the future, tidally perturbed g modes may allow us to carry out core-to-surface asteroseismic modelling of tidally distorted stars.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 643 ( 2020-11), p. A162-
    Abstract: Context. Eclipsing binary systems with components that pulsate in gravity modes ( g modes) allow for simultaneous and independent constraints of the chemical mixing profiles of stars. The high precision of the dynamical masses and radii as well as the imposition of identical initial chemical compositions and equivalent ages provide strong constraints during the modelling of g -mode period-spacing patterns. Aims. We aim to assemble a sample of g -mode pulsators in detached eclipsing binaries with the purpose of finding good candidates for future evolutionary and asteroseismic modelling. In addition, we present a case study of the eclipsing binary KIC9850387, identified as our most promising candidate, and detail the results of the observational spectroscopic, photometric, and asteroseismic analysis of the system. Methods. We selected all of the detached eclipsing binaries in the Kepler eclipsing binary catalogue with Kepler Input Catalogue (KIC) temperatures between 6000 K and 10 000 K, and performed a visual inspection to determine the presence and density of g modes, and the presence of g -mode period-spacing patterns in their frequency spectra. We then characterised our sample based on their g -mode pulsational parameters and binary and atmospheric parameters. A spectroscopic follow-up of our most promising candidate was then performed, and the orbital elements of the system were extracted. We then performed spectral disentangling followed by atmospheric modelling and abundance analysis for the primary star. We utilised an iterative approach to simultaneously optimise the pulsational and eclipse models, and subsequently performed an analysis of the pressure- ( p -) and g -mode pulsational frequencies. Results. We compiled a sample of 93 Kepler eclipsing binary stars with g -mode pulsating components and identified clear g -mode period-spacing patterns in the frequency spectra of seven of these systems. We also identified 11 systems that contained hybrid p - and g -mode pulsators. We found that the g -mode pulsational parameters and the binary and atmospheric parameters of our sample are weakly correlated at best, as expected for detached main-sequence binaries. We find that the eclipsing binary KIC9850387 is a double-lined spectroscopic binary in a near-circular orbit with a hybrid p - and g -mode pulsating primary with M p = 1.66 −0.01 +0.01 M ⊙ and R p = 2.154 −0.004 +0.002 R ⊙ , and a solar-like secondary with M s = 1.062 −0.005 +0.003 M ⊙ and R s = 1.081 −0.002 +0.003 R ⊙ . We find ℓ  = 1 and ℓ  = 2 period-spacing patterns in the frequency spectrum of KIC9850387 spanning more than ten radial orders each, which will allow for stringent constraints of stellar structure during future asteroseismic modelling.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 673 ( 2023-05), p. A40-
    Abstract: Context. The origin of the observed population of Wolf-Rayet (WR) stars in low-metallicity galaxies, such as the Small Magellanic Cloud (SMC), is not yet understood. Standard, single-star evolutionary models predict that WR stars should stem from very massive O-type star progenitors, but these are very rare. On the other hand, binary evolutionary models predict that WR stars could originate from primary stars in close binaries. Aims. We conduct an analysis of the massive O star, AzV 14, to spectroscopically determine its fundamental and stellar wind parameters, which are then used to investigate evolutionary paths from the O-type to the WR stage with stellar evolutionary models. Methods. Multi-epoch UV and optical spectra of AzV 14 are analyzed using the non-local thermodynamic equilibrium (LTE) stellar atmosphere code PoWR. An optical TESS light curve was extracted and analyzed using the PHOEBE code. The obtained parameters are put into an evolutionary context, using the MESA code. Results. AzV 14 is a close binary system with a period of P  = 3.7058 ± 0.0013 d. The binary consists of two similar main sequence stars with masses of M 1, 2  ≈ 32  M ⊙ . Both stars have weak stellar winds with mass-loss rates of log Ṁ /( M ⊙ yr −1 ) = −7.7 ± 0.2. Binary evolutionary models can explain the empirically derived stellar and orbital parameters, including the position of the AzV 14 components on the Hertzsprung-Russell diagram, revealing its current age of 3.3 Myr. The model predicts that the primary will evolve into a WR star with T eff  ≈ 100 kK, while the secondary, which will accrete significant amounts of mass during the first mass transfer phase, will become a cooler WR star with T eff  ≈ 50 kK. Furthermore, WR stars that descend from binary components that have accreted significant amount of mass are predicted to have increased oxygen abundances compared to other WR stars. This model prediction is supported by a spectroscopic analysis of a WR star in the SMC. Conclusions. Inspired by the binary evolutionary models, we hypothesize that the populations of WR stars in low-metallicity galaxies may have bimodal temperature distributions. Hotter WR stars might originate from primary stars, while cooler WR stars are the evolutionary descendants of the secondary stars if they accreted a significant amount of mass. These results may have wide-ranging implications for our understanding of massive star feedback and binary evolution channels at low metallicity.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 641 ( 2020-09), p. A43-
    Abstract: Context. HR 6819 was recently proposed to be a triple system consisting of an inner B-type giant plus black hole (BH) binary with an orbital period of 40 d and an outer Be tertiary. This interpretation is mainly based on two inferences: that the emission attributed to the outer Be star is stationary and that the inner star, which is used as mass calibrator for the BH, is a B-type giant. Aims. We re-investigate the properties of HR 6819 to search for a possibly simpler alternative explanation for HR 6819, which does not invoke the presence of a triple system with a BH in the inner binary. Methods. Based on an orbital analysis, the disentangling of the spectra of the two visible components and the atmosphere analysis of the disentangled spectra, we investigate the configuration of the system and the nature of its components. Results. Disentangling implies that the Be component is not a static tertiary, but rather a component of the binary in the 40 d orbit. The inferred radial velocity amplitudes of K 1  = 60.4 ± 1.0 km s −1 for the B-type primary and K 2  = 4.0 ± 0.8 km s −1 for the Be-type secondary imply an extreme mass ratio of M 2 / M 1  = 15 ± 3. We find that the B-type primary, which we estimate to contribute about 45% to the optical flux, has an effective temperature of T eff  = 16 ± 1 kK and a surface gravity of log g  = 2.8 ± 0.2 [cgs], while the Be secondary, which contributes about 55% to the optical flux, has T eff  = 20 ± 2 kK and log g  = 4.0 ± 0.3 [cgs]. We infer spectroscopic masses of 0.4 −0.1 +0.3 and 6 −3 +5 for the primary and secondary which agree well with the dynamical masses for an inclination of i  = 32°. This indicates that the primary might be a stripped star rather than a B-type giant. Evolutionary modelling suggests that a possible progenitor system would be a tight ( P i  ≈ 2 d) B+B binary system that experienced conservative mass transfer. While the observed nitrogen enrichment of the primary conforms with the predictions of the evolutionary models, we find no indications for the predicted He enrichment. Conclusions. We suggest that HR 6819 is a binary system consisting of a stripped B-type primary and a rapidly-rotating Be star that formed from a previous mass-transfer event. In the framework of this interpretation, HR 6819 does not contain a BH. Interferometry can distinguish between these two scenarios by providing an independent measurement of the separation between the visible components.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    EDP Sciences ; 2022
    In:  Astronomy & Astrophysics Vol. 659 ( 2022-03), p. A177-
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 659 ( 2022-03), p. A177-
    Abstract: Context. Many well-known bright stars have been observed by the ongoing transiting exoplanet survey satellite (TESS) space mission. For several of them, these new data reveal previously unobserved variability, such as tidally perturbed pulsations in close binary stars. Aims. Using newly detected gravity-mode ( g -mode) pulsations in V456 Cyg, we aim to determine the global stellar properties of this short-period eclipsing binary and evaluate the interaction between these pulsations and the tides. Methods. We model the binary orbit and determine the physical properties of the component stars using the TESS photometry and published spectroscopy. We then measure the pulsation frequencies from the residuals of the light curve fit using iterative prewhitening, and analyse them to determine the global asteroseismic stellar parameters. We evaluate the pulsation parameters as a function of the orbital phase. Results. We find that the pulsations belong to the secondary component of V456 Cyg and that this star likely has a uniform radial rotation profile, synchronous ( ν rot  = 1.113 (14) d −1 ) with the binary orbit ( ν orb  = 1.122091 (8) d −1 ). The observed g modes are amplified by almost a factor three in the stellar hemisphere facing the primary. We present evidence that this is caused by tidal perturbation of the pulsations, with the mode coupling being strongly affected. Conclusions. V456 Cyg is only the second object for which tidally perturbed high-order g -mode pulsations are identified, after π 5 Ori. This opens up new opportunities for tidal g -mode asteroseismology, as it demonstrates another avenue in which g modes and tides can interact with each other.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 655 ( 2021-11), p. A59-
    Abstract: Context. Slowly pulsating B (SPB) stars are main-sequence multi-periodic oscillators that display non-radial gravity modes. For a fraction of these pulsators, 4-year photometric light curves obtained with the Kepler space telescope reveal period spacing patterns from which their internal rotation and mixing can be inferred. In this inference, any direct resonant mode coupling is usually ignored. Aims. We re-analyse the light curves of a sample of 38 known Kepler SPB stars. For 26 of them, the internal structure, including rotation and mixing, was recently inferred from their dipole prograde oscillation modes. Our aim is to detect direct non-linear resonant mode coupling among the largest-amplitude gravity modes. Methods. We extract up to 200 periodic signals per star with five different iterative pre-whitening strategies based on linear and non-linear regression applied to the light curves. We then identify candidate coupled gravity modes by verifying whether they fulfil resonant phase relations. Results. For 32 of the 38 SPB stars we find at least one candidate resonance that is detected in both the linear and the best non-linear regression model fit to the light curve and involves at least one of the two largest-amplitude modes. Conclusions. The majority of the Kepler SPB stars reveal direct non-linear resonances based on the largest-amplitude modes. These stars are thus prime targets for the non-linear asteroseismic modelling of intermediate-mass dwarfs to assess the importance of mode couplings in probing their internal physics.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 637 ( 2020-05), p. A60-
    Abstract: Context. Eclipsing, spectroscopic double-lined binary star systems are excellent laboratories for calibrating theories of stellar interior structure and evolution. Their precise and accurate masses and radii measured from binary dynamics offer model-independent constraints and challenge current theories of stellar evolution. Aims. We aim to investigate the mass discrepancy in binary stars. This is the significant difference between stellar components’ masses measured from binary dynamics and those inferred from models of stellar evolution via positions of the components in the T eff  − log  g Kiel diagram. We study the effect of near-core mixing on the mass of the convective core of the stars and interpret the results in the context of the mass discrepancy. Methods. We fitted stellar isochrones computed from a grid of MESA stellar evolution models to a homogeneous sample of eleven high-mass binary systems. Two scenarios are considered where individual stellar components of a binary system are treated independent of each other and where they are forced to have the same age and initial chemical composition. We also study the effect of the microturbulent velocity and turbulent pressure on the atmosphere model structure and stellar spectral lines, and its link with the mass discrepancy. Results. We find that the mass discrepancy is present in our sample and that it is anti-correlated with the surface gravity of the star. No correlations are found with other fundamental and atmospheric parameters, including the stellar mass. The mass discrepancy can be partially accounted for by increasing the amount of near-core mixing in stellar evolution models. We also find that ignoring the microturbulent velocity and turbulent pressure in stellar atmosphere models of hot evolved stars results in the overestimation of their effective temperature by up to 8%. Together with enhanced near-core mixing, this can almost entirely account for the ∼30% mass discrepancy found for the evolved primary component of V380 Cyg. Conclusions. We find a strong link between the mass discrepancy and the convective core mass. The mass discrepancy can be solved by considering the combined effect of extra near-core boundary mixing and the consistent treatment in the spectrum analysis of hot evolved stars. Our binary modelling results in convective core masses between 17 and 35% of the stellar mass, which is in excellent agreement with the results from gravity-mode asteroseismology of single stars. This implies larger helium core masses near the end of the main sequence than have been anticipated so far.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...