GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Carbon dioxide. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (216 pages)
    Edition: 1st ed.
    ISBN: 9783030286224
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.40
    DDC: 546.68119999999999
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Conversion of Carbon Dioxide into Liquid Hydrocarbons Using Cobalt-Bearing Catalysts -- 1.1 Introduction -- 1.2 Hydrogenation of CO2 into Hydrocarbons over a Cobalt Catalyst in a Fischer-Tropsch Process -- 1.2.1 Fischer-Tropsch Reactions -- 1.2.2 Bimetallic Cobalt and Iron Catalysts -- 1.2.3 Promoters on Cobalt-Based Catalysts for CO2 Hydrogenation -- 1.2.4 Effect of the Supports and Structure of Cobalt-Based Catalysts -- 1.2.5 Pretreatment of Cobalt Catalysts -- 1.2.6 Effect of Pressure and Ratio of the Feed Gas -- 1.3 Hydrogenation of CO2 over a Cobalt Catalyst in a Solution -- 1.4 CO2 Reforming of CH4 over a Cobalt Catalyst -- 1.5 Electrochemical Reduction of CO2 over a Cobalt Catalyst -- 1.5.1 Electrochemical Reduction of CO2 -- 1.5.2 Cobalt-Based Electrocatalysts for Reduction of CO2 into Formate -- 1.5.3 Cobalt Phthalocyanines and Cobalt Porphyrins for CO2 Reduction -- 1.6 Photocatalytic Reduction of CO2 over a Cobalt Catalyst -- 1.7 Conclusions -- References -- Chapter 2: Conversion of Carbon Dioxide Using Lead/Composite/Oxide Electrode into Formate/Formic Acid -- 2.1 Introduction -- 2.2 Electrode Composition -- 2.2.1 Lead Metal -- 2.2.2 Lead-Based Composites -- 2.2.3 Lead Oxides -- 2.3 Catalytic Mechanism -- 2.4 Reactor and Electrode Type -- 2.4.1 Traditional Electrode -- 2.4.2 Gas Diffusion Electrodes -- 2.4.3 Other Types -- 2.5 Effects of Operation Conditions -- 2.6 Conclusions -- References -- Chapter 3: Thermochemical Conversion of Carbon Dioxide to Carbon Monoxide by Reverse Water-Gas Shift Reaction over the Ceria-B... -- 3.1 Introduction -- 3.2 Reverse Water-Gas Shift Thermodynamic Considerations -- 3.3 Reverse Water-Gas Shift Catalyst -- 3.3.1 Supported Metal Catalysts -- 3.3.2 Reverse Water-Gas Shift Promoters. , 3.4 Chemistry of Cerium During Reduction and Reverse Water-Gas Shift -- 3.4.1 CeO2 Reduction Thermodynamics -- 3.4.2 In Situ CeO2 Reduction -- 3.4.3 CeO2 Reduction Mechanism -- 3.5 Conclusion -- References -- Chapter 4: Photocatalytic Systems for Carbon Dioxide Conversion to Hydrocarbons -- 4.1 Introduction -- 4.2 Fundamental Aspects for CO2 Photoconversion -- 4.2.1 Background and General Principles -- 4.2.2 Challenges of CO2 Photoconversion -- 4.3 Carbon Dioxide Photoreduction over UV-Light Semiconductors -- 4.3.1 Titanium Dioxide (TiO2) Material -- 4.3.2 TiO2-Based Photocatalyst -- Transition and Noble Elements -- Rare Earth Elements -- 4.4 Carbon Dioxide Photoreduction on Visible Light Materials -- 4.4.1 Metal Oxide Photocatalyst -- 4.4.2 Porous Materials -- 4.4.3 Carbon-Based Materials -- Graphene and Graphene Oxide -- Graphitic Carbon Nitride (g-C3N4) -- References -- Chapter 5: Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal-Organic Frameworks and Non-metal-Organic Framew... -- 5.1 Introduction -- 5.2 Challenges Involved in Methanol Production from Carbon Dioxide Electrocatalytic Reduction -- 5.3 Homogeneous and Heterogeneous Electrocatalysts for Electroreduction of Carbon Dioxide -- 5.3.1 Homogeneous Catalysts for Electroreduction of Carbon Dioxide -- 5.3.2 Heterogeneous Catalysis for Electroreduction of Carbon Dioxide -- 5.4 Kinetics of Electroreduction of Carbon Dioxide into Methanol -- 5.5 Formation of Carbon Dioxide Anion Radical -- 5.6 Formation of Methanoate from the Electroreduction of Carbon Dioxide -- 5.7 Formation of Carbon Monoxide from Electroreduction of Carbon Dioxide -- 5.8 Formation of Methanol from Electroreduction of Carbon Dioxide -- 5.9 Hydrogen Evolution Reaction -- 5.10 Benchmark Non-metal-Organic Framework-Based Catalysts for Carbon Dioxide Reduction. , 5.11 Metal-Organic Frameworks as Catalysts for the Carbon Dioxide Reduction Reaction -- 5.12 Conclusion and Recommendations -- References -- Chapter 6: Photocatalytic Conversion of Carbon Dioxide into Hydrocarbons -- 6.1 Introduction -- 6.2 General Principles of Artificial Photocatalysis -- 6.2.1 Thermodynamic Theory of Carbon Dioxide Photoreduction -- 6.2.2 General Criterion of Carbon Dioxide Photoconversion Systems -- Product Formation Rate -- Selectivity Percentage -- Amount of Carbon Dioxide Converted -- Apparent Quantum Efficiency -- Turnover Number -- 6.3 Photocatalytic Material for Carbon Dioxide Photoreduction -- 6.3.1 Metal Oxide Photocatalyst for Carbon Dioxide Reduction -- 6.3.2 Layered Double Hydroxide -- 6.3.3 Metal Chalcogenides -- 6.3.4 Carbon-Based Two-Dimensional Layered Material -- 6.4 Surface Modification of Photocatalyst for Carbon Dioxide Reduction -- 6.4.1 Metal and Non-metal Doping Semiconductor -- 6.4.2 Surface Sensitization of Semiconductor -- 6.4.3 Hybridization with Another Semiconductor Material -- 6.5 Effect Operating Parameters on Carbon Dioxide Reduction -- 6.5.1 Reaction Medium -- 6.5.2 pH -- 6.5.3 Wavelength and Light Intensity -- 6.5.4 Amount of Catalyst -- 6.5.5 Particle Size -- 6.5.6 Pressure -- 6.5.7 Temperature -- 6.6 Photoreactors for Carbon Dioxide Photoconversion -- 6.6.1 Fluidized Bed Reactor -- 6.6.2 Fixed Bed Reactor -- 6.7 Conclusions -- References -- Chapter 7: Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.1 Introduction -- 7.2 Liquid Phase Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.2.1 Electrocatalysts -- 7.2.2 Electrolytes -- 7.2.3 Electrode Structure -- 7.2.4 Electrochemical Cell Configuration -- 7.2.5 Operation Parameters -- 7.3 Gaseous Phase Electrocatalytic Production of Methanol from Carbon Dioxide -- 7.3.1 Electrocatalysts -- 7.3.2 Electrolytes. , 7.3.3 Electrochemical Cell Configuration -- 7.3.4 Operation Parameters -- 7.4 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Sewage-Purification. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (460 pages)
    Edition: 1st ed.
    ISBN: 9783030803346
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.70
    Language: English
    Note: Intro -- Foreword -- Contents -- About the Editors -- Chapter 1: Analytical Methods for the Determination of Heavy Metals in Water -- 1.1 Introduction -- 1.2 Total Concentration and Speciation Analysis -- 1.3 Health and Legislation -- 1.4 Sample Preparation for Elemental Analysis of Heavy Metals -- 1.4.1 Solid-Phase Extraction -- 1.4.1.1 Classic Solid-Phase Extraction -- 1.4.1.1.1 Modern Sorbents for Classic Solid-Phase Extraction -- 1.4.1.1.2 Micro Solid-Phase Extraction -- 1.4.1.2 Dispersive Solid-Phase Extraction -- 1.4.1.2.1 Dispersion Techniques -- 1.4.1.2.2 Modern Sorbents for Dispersive Solid-Phase Extraction and Dispersive Micro-Solid Phase Extraction -- Nanostructured Materials -- Hybrid Materials -- 1.4.1.3 Magnetic Solid-Phase Extraction -- 1.4.1.3.1 Advanced Magnetic Sorbents -- 1.4.2 Liquid-Liquid Extraction -- 1.4.2.1 Modern Solvents Used in Liquid-Liquid Extraction -- 1.4.2.1.1 Non-ionic or Zwitterionic Surfactants -- 1.4.2.1.2 Ionic Liquids -- 1.4.2.1.3 Deep Eutectic Solvents -- 1.4.2.2 Novel Liquid-Liquid Microextraction Techniques -- 1.4.2.2.1 Dispersive Liquid-Liquid Microextraction Techniques -- 1.4.2.2.2 In-Situ Phase Separation Techniques -- 1.4.2.2.3 Cloud Point Extraction -- 1.4.2.2.4 Non-dispersive Microextraction Techniques -- 1.4.2.3 Liquid-Liquid Extraction in Flow Analysis -- 1.5 Analytical Techniques for Heavy Metal Detection -- 1.5.1 Spectroscopic Techniques -- 1.5.1.1 Atomic Absorption Spectroscopy -- 1.5.1.2 Atomic Fluorescence Spectrometry -- 1.5.1.3 Atomic Emission Spectrometry -- 1.5.1.4 Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.4.1 Single Particle Inductively Coupled Plasma-Mass Spectrometry -- 1.5.1.5 Laser-Induced Breakdown Spectroscopy -- 1.5.1.6 X-Ray Fluorescence -- 1.5.1.7 UV-Vis Spectrophotometry -- 1.5.2 Electrochemical Techniques -- 1.5.2.1 Potentiostatic Techniques. , 1.5.2.1.1 Amperometry -- 1.5.2.1.2 Chronocoulometry -- 1.5.2.1.3 Voltammetric Techniques -- 1.5.2.2 Galvanostatic Stripping Chronopotentiometry -- 1.5.2.3 Electrochemiluminescence -- 1.5.3 Other Methods -- 1.5.3.1 Ion Chromatography -- 1.5.3.2 Surface-Enhanced Raman Spectroscopy -- 1.5.3.3 Bio Methods -- 1.6 Conclusions and Future Perspectives -- References -- Chapter 2: Olive-Oil Waste for the Removal of Heavy Metals from Wastewater -- 2.1 Introduction -- 2.2 Olive Tree Pruning as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.2.1 Characterization -- 2.2.2 Biosorption Tests -- 2.3 Olive Stone as Biosorbent of Heavy Metals from Aqueous Solutions -- 2.3.1 Characterization -- 2.3.2 Biosorption Tests -- 2.4 Olive Pomace and Olive-Cake as Biosorbents of Heavy Metals from Aqueous Solutions -- 2.4.1 Characterization -- 2.4.2 Biosorption Tests -- 2.5 Other Valorization Opportunities for Olive-Oil Waste -- 2.6 Conclusions -- References -- Chapter 3: Metal Oxide Composites for Heavy Metal Ions Removal -- 3.1 Introduction -- 3.2 Issues in Environmental Remediation -- 3.3 Different Types of Magnetic Sorbents -- 3.3.1 Iron Oxide Modified Nanoparticle -- 3.3.2 Zeolite -- 3.3.3 Silica -- 3.3.4 Polymer Functionalization -- 3.3.5 Chitosan and Alginate -- 3.3.6 Activated Carbon -- 3.3.7 Carbon Nanotubes (CNTs) and Graphene -- 3.3.8 Agricultural Wastes -- 3.4 Case Studies -- 3.4.1 Characterization -- 3.4.2 Factors Affecting Sorption Processes -- 3.4.3 Agro-Based Magnetic Biosorbents Recovery and Reusability -- 3.5 Conclusion -- References -- Chapter 4: Two-Dimensional Materials for Heavy Metal Removal -- 4.1 Introduction -- 4.2 Heavy Metal Ions Removal Mechanism -- 4.2.1 Surface Complexation -- 4.2.2 Van der Waals Interaction -- 4.2.3 Ion Exchange -- 4.3 Different Types of Two-Dimensional Material for Heavy Metal Removal. , 4.3.1 Graphene-Based Two-Dimensional Materials -- 4.3.1.1 Structure -- 4.3.1.2 Graphene-Based Materials for Heavy Metal Removal -- 4.3.2 Dichalcogenides -- 4.3.2.1 Structure -- 4.3.2.2 Molybdenum Disulfide for Heavy Metal Removal -- 4.3.3 MXenes -- 4.3.3.1 Structure -- 4.3.3.2 MXenes for Heavy Metal Removal -- 4.3.4 Clay Minerals -- 4.3.4.1 Structure -- 4.3.4.2 Clay Mineral for Heavy Metal Removal -- 4.3.5 Layered Double Hydroxides -- 4.3.5.1 Structure -- 4.3.5.2 Layered Double Hydroxides for Heavy Metal Removal -- 4.3.6 Layered Zeolites -- 4.3.6.1 Structure -- 4.3.6.2 Layered Zeolites for Heavy Metal Removal -- 4.3.7 Other Two-Dimensional Materials -- 4.4 Heavy Metal Removal Other than Adsorption -- 4.5 Conclusions and Perspectives -- Appendix: List of Two-Dimensional Materials that Mentioned in this Chapter for Heavy Metal Removal and their Removal Capacities -- References -- Chapter 5: Membranes for Heavy Metals Removal -- 5.1 Introduction -- 5.2 Electrodialysis -- 5.2.1 Electrodialysis Applied to Metal Removal -- 5.2.2 Principle -- 5.2.3 Evaluation and Control Parameters -- 5.2.4 Use in Electroplating Industry -- 5.2.4.1 Zinc -- 5.2.4.2 Chromium -- 5.2.4.3 Copper -- 5.2.4.4 Nickel -- 5.2.5 Use in Mining and Mineral Processing Industry -- 5.2.6 Final Considerations -- References -- Chapter 6: Metal Oxides for Removal of Heavy Metal Ions -- 6.1 Introduction -- 6.2 Adsorption Methods -- 6.3 Metal Oxides for the Removal of Heavy Metal Ions from Water -- 6.3.1 Titanium Dioxide -- 6.3.2 Manganese Dioxide -- 6.3.3 Iron Oxide -- 6.3.4 Aluminum Oxide -- 6.3.5 Binary Metal Oxides -- 6.4 Conclusion -- References -- Chapter 7: Organic-Inorganic Ion Exchange Materials for Heavy Metal Removal from Water -- 7.1 Introduction -- 7.2 Ion Exchange Process -- 7.3 Ion Exchange Materials -- 7.3.1 Inorganic Ion Exchangers -- 7.3.2 Organic Ion Exchangers. , 7.4 Heavy Metal Removal with Ion Exchange Materials -- 7.4.1 Lead (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.2 Mercury (II) Removal from Waste Water with Organic-Inorganic Ion Exchangers -- 7.4.3 Cadmium (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.4 Nickel (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.5 Chromium (III, VI) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.6 Copper (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.4.7 Zinc (II) Removal from Wastewater with Organic-Inorganic Ion Exchangers -- 7.5 Conclusion -- References -- Chapter 8: Low-Cost Technology for Heavy Metal Cleaning from Water -- 8.1 Introduction -- 8.2 Sources and Impact -- 8.3 Different Routes of Contamination -- 8.4 Conventional Water Treatment Methods -- 8.4.1 Preliminary Treatment -- 8.4.2 Secondary Water Treatment -- 8.4.3 Tertiary Water Treatment -- 8.4.4 Membrane Filtration -- 8.5 Advanced Technology for Heavy Metal Ion Removal -- 8.5.1 Nano-Adsorption -- 8.5.2 Molecularly-Imprinted Polymers -- 8.5.3 Layered Double Hydroxides (LDH) and Covalent-Organic Framework (COF) -- 8.5.4 Emerging Membrane Technologies -- 8.6 Low-Cost and Biotechnological Approaches -- 8.6.1 Biosorption -- 8.6.2 Microbial Remediation -- 8.6.3 Biotechnological Strategies -- 8.7 Conclusion -- References -- Chapter 9: Use of Nanomaterials for Heavy Metal Remediation -- 9.1 General Introduction -- 9.2 Heavy Metals in the Environment -- 9.2.1 Characteristics of Selected Heavy Metals -- 9.3 Wastewater Treatment -- 9.4 Nanomaterials -- 9.4.1 Clay Minerals -- 9.4.2 Layered Double Hydroxide and Their Mixed-Oxides Counterparts -- 9.4.3 Zeolites -- 9.4.4 Two-dimensional Early Transition Metal Carbides and Carbonitrides -- 9.4.5 Metal Based Nanoparticles. , 9.4.5.1 Zero-valent Metals -- 9.4.5.2 Metal Oxides -- 9.4.6 Carbon-based Materials -- 9.4.6.1 Carbon Nanotubes -- 9.4.6.2 Fullerenes -- 9.4.6.3 Graphene -- 9.4.6.4 Graphene Oxide -- 9.4.6.5 Reduced Graphene Oxide -- 9.4.6.6 Graphitic Carbon Nitride -- 9.4.7 Metal Organic Frameworks -- 9.5 Disadvantages of Using Nanomaterials -- 9.6 Conclusions -- References -- Chapter 10: Ecoengineered Approaches for the Remediation of Polluted River Ecosystems -- 10.1 Introduction -- 10.2 Occurrence of Pollutants, Emerging Contaminants and Their Riverine Fates -- 10.3 Hazardous Effects of Water Contaminants on Aquatic and Terrestrial Biota -- 10.4 Historic Concepts of River Bioremediation -- 10.5 Physico-chemical River Remediation Methods -- 10.6 Eco-engineered River Water Remediation Technologies -- 10.6.1 Plant Based River Remediation Systems -- 10.6.1.1 Constructed Wetlands -- 10.6.1.2 Ecological Floating Wetlands, Beds and Islands -- 10.6.1.3 Eco-tanks -- 10.6.1.4 Bio-racks -- 10.6.2 Microorganisms Based River Remediation Systems -- 10.6.2.1 Biofilm Based Eco-engineered Treatment Systems -- 10.6.2.1.1 Bio-filters in River Bioremediation -- 10.6.2.2 Periphyton Based Technologies -- 10.7 In Situ Emerging Integrated Systems for the River Bioremediation -- 10.8 Concluding Remarks -- References -- Chapter 11: Ballast Water Definition, Components, Aquatic Invasive Species, Control and Management and Treatment Technologies -- 11.1 Introduction -- 11.2 Component of Ballast Water -- 11.3 Aquatic Invasive Species -- 11.4 The International Convention for the Control and Management of Ships Ballast Water and Sediments -- 11.5 IMO Standards for Ballast Water Quality -- 11.6 Management Options of Ballast Water -- 11.7 Ballast Water Treatment Technologies -- 11.7.1 Mechanical Treatment -- 11.7.2 Physical Treatment -- 11.7.2.1 Ultrasound and Cavitation. , 11.7.3 Chemical Treatment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Carbon sequestration. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (170 pages)
    Edition: 1st ed.
    ISBN: 9783030292980
    Series Statement: Sustainable Agriculture Reviews Series ; v.37
    DDC: 577.14400000000001
    Language: English
    Note: Intro -- Preface -- Contents -- Chapter 1: Introduction to Carbon Dioxide Capture and Storage -- 1.1 Introduction -- 1.2 Carbon Dioxide -- 1.3 Carbon Dioxide Capture and Storage Technology -- 1.3.1 Capturing and Separation -- 1.3.2 Transport -- 1.3.3 Injection and Storage -- 1.3.3.1 Integrity Issues -- 1.3.4 Monitoring -- 1.4 Technological and Scientific Concerns -- 1.5 Summary -- References -- Chapter 2: Sources of Carbon Dioxide and Environmental Issues -- 2.1 Introduction -- 2.2 Source of Carbon Dioxide -- 2.2.1 Anthropogenic Activities -- 2.2.1.1 Carbon Dioxide Emissions from Fossil Fuels´ Combustion -- 2.2.1.2 Trends in emissions -- 2.2.1.3 Industrial Emissions -- 2.2.1.4 Overpopulation and Carbon Dioxide Emissions -- 2.2.1.5 Agriculture Sector -- 2.2.2 Natural Sources of Carbon Dioxide -- 2.2.2.1 Forest Fires -- 2.2.2.2 Volcanic eruption -- 2.3 Environmental Issues Related to Carbon Dioxide Emissions -- 2.3.1 Cyclones and Hurricanes -- 2.3.2 Droughts -- 2.3.3 Heat Waves -- 2.3.4 Food System and Food Security -- 2.3.5 Glaciers Melting -- 2.4 Conclusion -- References -- Chapter 3: Carbon Capture Utilization and Storage Supply Chain: Analysis, Modeling and Optimization -- 3.1 Introduction -- 3.2 Status of Carbon Capture Utilization and Storage Supply Chain -- 3.3 Carbon Capture Utilization and Storage Technology Overview -- 3.3.1 CO2 Capture Options -- 3.3.1.1 Absorption Technology -- 3.3.1.2 Adsorption Technology -- 3.3.1.3 Membrane Technology -- 3.3.1.4 Chemical Looping Combustion -- 3.3.1.5 Cryogenic Technology -- 3.3.1.6 Hybrid Technology -- 3.3.2 CO2 Utilization Options -- 3.3.3 CO2 Storage Options -- 3.4 Design and Optimization of Carbon Capture Utilization and Storage Supply Chain -- 3.4.1 Methodology for the Design -- 3.4.2 Development of Optimization Tool -- 3.5 Cost Analysis. , 3.6 Literature Work About Carbon Capture Utilization and Storage Supply Chain -- 3.7 Conclusions -- References -- Chapter 4: Natural Carbon Sequestration by Forestry -- 4.1 Introduction -- 4.2 Influence of the Environment and Climate Variables in the Global Carbon Cycle -- 4.2.1 Nitrogen Fertilisation -- 4.2.2 Temperature and Soil Water Availability -- 4.2.3 Radiation -- 4.2.4 Climate Extremes and Disturbance -- 4.3 Forests Global Carbon Sink -- References -- Chapter 5: Carbon Sequestration via Biomineralization: Processes, Applications and Future Directions -- 5.1 Introduction -- 5.2 Biomineralization Processes and Mechanisms -- 5.2.1 Microbially-Mediated Biomineralization -- 5.2.2 Plant-Mediated Biomineralization -- 5.3 Carbon Dioxide Sequestration -- 5.3.1 Microbially-Mediated Biomineralization -- 5.3.2 Plant-Mediated Biomineralization -- 5.3.2.1 The Case of the Iroko Tree -- 5.3.2.2 The Case of Australian Acacia Species -- 5.3.2.3 Carbon Occlusion in Biominerals -- 5.4 Knowledge Gaps and Future Directions -- 5.5 Summary and Conclusions -- References -- Chapter 6: A Review of Coupled Geo-Chemo-Mechanical Impacts of CO2-Shale Interaction on Enhanced Shale Gas Recovery -- 6.1 Introduction -- 6.2 Properties of Shale and CO2 -- 6.2.1 Shale -- 6.2.2 CO2/Supercritical CO2 -- 6.3 Interaction of CO2 and Shale -- 6.3.1 Interaction of Shale with Anhydrous CO2 -- 6.3.2 CO2-Water-Rock Geochemical Reactions in Shale -- 6.3.3 CO2 Adsorption Induced Swelling in Shale -- 6.4 Effect of CO2-Shale Interaction on Rock Properties -- 6.4.1 Porosity and Permeability -- 6.4.2 Mechanical Properties -- 6.4.3 Adsorption Properties -- 6.5 Effect of CO2-Shale Interaction on Groundwater Quality -- 6.6 Conclusions -- References -- Chapter 7: Plantation Methods and Restoration Techniques for Enhanced Blue Carbon Sequestration by Mangroves -- 7.1 Introduction. , 7.2 Blue Carbon Sequestration -- 7.2.1 Carbon Balance in a Mangrove Ecosystem -- 7.3 Plantation Techniques for Mangroves -- 7.3.1 Establishment of Mangrove Nursery -- 7.3.2 Transplantation of Nursery Grown Seedlings -- 7.3.3 Direct Seeding Method -- 7.3.4 Drain and Trench Method -- 7.3.5 Fish Bone Canal System -- 7.4 Post Plantation Management -- 7.5 Community Participation in Mangrove Plantation -- 7.6 Conclusion -- References -- Chapter 8: Biowaste for Carbon Sequestration -- 8.1 Introduction -- 8.2 Sources of Biowastes -- 8.3 Environmental Impact of Biowastes -- 8.4 Application of Biowastes for Carbon Sequestration -- 8.4.1 Composting Technology -- 8.4.2 As a Fertilizer/Organic Farming -- 8.4.3 Energy -- 8.4.4 Biochar Technology -- 8.5 Future Research Directions -- 8.6 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Carbon sequestration. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (284 pages)
    Edition: 1st ed.
    ISBN: 9783030293376
    Series Statement: Sustainable Agriculture Reviews Series ; v.38
    DDC: 577.14400000000001
    Language: English
    Note: Intro -- Preface -- Contents -- Chapter 1: Nanosponges for Carbon Dioxide Sequestration -- 1.1 Introduction -- 1.1.1 General Overview -- 1.1.2 Technologies to Capture CO2 -- 1.1.3 Functionalization -- 1.2 Characterization Techniques -- 1.2.1 N2 Adsorption/Desorption Isotherms at −196.15 °C -- 1.2.2 Transmission Electronic Microscopy -- 1.2.3 X Ray Diffraction -- 1.2.4 Elemental and Thermogravimetric Analysis -- 1.2.5 Nuclear Magnetic Resonance -- 1.2.6 Infrared Spectroscopy -- 1.2.7 Calorimetry -- 1.3 Amine-Functionalized Adsorbents -- 1.3.1 Amine Functionalized Zeolites -- 1.3.2 Amine Functionalized Activated Carbons -- 1.3.3 Amine Functionalized Metal Organic Frameworks -- 1.3.4 Amine-Functionalized Polymers -- 1.3.5 Amine-Functionalized Pore Expanded Silicas and Silica Nanosponges -- 1.3.6 Amine-Functionalized Modified Clays -- 1.4 Final Remarks -- References -- Chapter 2: Absorbents, Media, and Reagents for Carbon Dioxide Capture and Utilization -- 2.1 Introduction -- 2.2 Absorbents for Carbon Dioxide Capture and Subsequent Utilization -- 2.2.1 Amine Solution -- 2.2.2 Metal Hydroxide Solution -- 2.2.3 Ionic Liquid -- 2.2.4 Weak Base -- 2.2.5 Amino Acid Salt -- 2.2.6 Other Types of Absorbent -- 2.2.7 Overview -- 2.3 Conclusion -- References -- Chapter 3: Metal Oxides for Carbon Dioxide Capture -- 3.1 Introduction -- 3.2 Adsorption Technology for Carbon Dioxide Capture -- 3.3 High Temperature Solid Looping -- 3.3.1 Chemical Looping -- 3.4 Magnesium Oxide Based Adsorbents -- 3.4.1 Adsorption Mechanism -- 3.4.2 Performance Enhancement Strategies -- 3.5 Layered Double Oxides -- 3.5.1 Methodologies for Improving Capture Characteristics -- 3.6 Calcium Oxide Based Adsorbents -- 3.6.1 Strategies for Sustainable Reactivity -- 3.7 Metal Oxides for Oxygen Transfer in Chemical Looping Technology -- 3.8 Conclusions -- References. , Chapter 4: Hybrid Membranes for Carbon Capture -- 4.1 Introduction -- 4.2 Background -- 4.3 Mixed Matrix Membranes -- 4.3.1 Zeolites -- 4.3.2 Silica -- 4.3.3 Carbon Nano Tube -- 4.3.4 Carbon Molecular Sieve -- 4.3.5 Metal Organic Framework -- 4.3.6 Graphene -- 4.4 Preparation of Mixed Matrix Membranes -- 4.5 Summary and Outlook -- References -- Chapter 5: Ionic Liquids for Carbon Dioxide Capture -- 5.1 Introduction -- 5.2 Thermophysical Properties of Ionic Liquids -- 5.2.1 Viscosity -- 5.2.2 Thermal Stability -- 5.2.3 Biodegradability -- 5.3 Pure Ionic Liquids for CO2 Capture -- 5.3.1 Conventional Ionic Liquids -- 5.3.2 Task-Specific Ionic Liquids -- 5.3.3 Polymerized Ionic Liquids in CO2 Capture -- 5.4 CO2 Capture with Ionic Liquids Functionalized Solvents -- 5.4.1 Functionalizing the Anion of Ionic Liquid with Alkaline Group-NH2 -- 5.4.2 Attach the Anion of Ionic Liquid with Functional Group -- 5.5 CO2 Adsorption -- 5.5.1 Conventional Adsorbents -- 5.5.2 Solid Ionic Liquids -- 5.5.3 Supported Ionic Liquids onto a Solid Porous Material -- References -- Chapter 6: Carbon Sequestration in Alkaline Soils -- 6.1 Introduction -- 6.2 Management of Alkaline Soils -- 6.3 Carbon Stocks in Alkaline Soils -- 6.4 Factor Affecting Soil Carbon Degradation and Decomposition -- 6.5 Carbon Sequestration -- 6.6 Strategies for Carbon Sequestration in Alkaline Soils -- 6.6.1 Application of Amendments Containing Divalent Metals -- 6.6.2 Conservation Farming -- 6.6.3 Cover Crops -- 6.6.4 Manures and Composts -- 6.6.5 Crop Rotation/Selection -- 6.6.6 Biochar Intervention -- 6.6.7 Controlling Soil Erosion -- 6.6.8 Crop Residue Management -- 6.7 Conclusion and Future Research Opportunities -- References -- Chapter 7: Metal-Organic Frameworks for Carbon Dioxide Capture -- 7.1 Introduction -- 7.2 Literature Survey -- 7.2.1 Carbon Dioxide Capture and Storage. , 7.2.1.1 Carbon Dioxide Capture -- 7.2.1.2 Carbon Dioxide Transport and Storage -- 7.3 Current Carbon Dioxide Capture Technologies -- 7.3.1 Absorption- Amine Based Scrubbing -- 7.3.2 Absorption: Aqueous Ammonium Absorption -- 7.3.3 Surface Adsorption -- 7.4 Introduction to Metal-Organic Frameworks -- 7.4.1 Structure of Metal Organic Frameworks -- 7.4.2 MOF Properties and Applications -- 7.4.3 Zinc Based Metal Organic Frameworks (ZIFs) -- 7.5 Carbon Capture Using Metal Organic Frameworks -- 7.5.1 Adsorption of Carbon Dioxide on a Zirconium Based Metal Organic Framework (MOF) -- 7.5.1.1 Synthesis of Zirconium Based MOF (Zr-MOF) -- 7.5.1.2 Characterization of Prepared MOF -- 7.5.1.3 Results and Discussions -- 7.5.2 Adsorption of Carbon Dioxide on a Porous Carbon Material Derived from Zinc Based MOF -- 7.6 Conclusion -- References -- Chapter 8: Ionic Liquids for Carbon Dioxide Capture -- 8.1 Introduction -- 8.2 Ionic Liquids -- 8.3 Characteristics of Ionic Liquids -- 8.3.1 Melting Point -- 8.3.2 Critical Properties -- 8.3.3 Vapor Pressure -- 8.3.4 Thermal Stability -- 8.3.5 Density -- 8.3.6 Viscosity -- 8.3.7 Biodegradability -- 8.3.8 Solubility -- 8.3.9 Selectivity -- 8.3.10 Conductivity -- 8.4 Improving Ionic Liquids Performance -- 8.5 Previous Research -- 8.6 Important Factors for Choosing Suitable Ionic Liquid for Carbon Dioxide Capturing -- 8.7 Economic View -- 8.8 Challenge -- 8.9 Conclusion -- References -- Chapter 9: Methods for the Recovery of CO2 from Chemical Solvents -- 9.1 Introduction -- 9.2 Chemical and Physical Absorption -- 9.3 Characteristics of Chemical Solvents -- 9.3.1 Alkanolamines -- 9.3.2 Blend of Alkanolamines -- 9.3.3 Sterically Hindered Amines -- 9.3.4 Novel Amine-Based Solvents -- 9.3.5 Potassium Carbonate -- 9.3.6 Alkali Metal Hydroxide Solution -- 9.3.7 Ammonia Aqueous Solution -- 9.4 Methods of CO2 Recovery. , 9.4.1 Absorption/Desorption Process Through Packed Columns -- 9.4.2 Membrane Method -- 9.4.2.1 Polymeric Based Membranes -- 9.4.2.2 Ceramic and Metallic Membranes -- 9.4.2.3 Microporous Solid Membranes -- 9.4.3 Superiority of Membrane Method over Absorption/Desorption through Packed Columns Method -- 9.4.4 Membrane Flash Process -- 9.4.5 Eelectro Dialysis Membrane Process -- 9.4.6 Electrolysis Membrane Process -- 9.5 Conclusion -- References -- Chapter 10: Cryogenic CO2 Capture -- 10.1 Introduction -- 10.2 Pre-combustion Carbon Dioxide Capture -- 10.3 Oxy-Fuel Combustion Carbon Dioxide Capture -- 10.4 Post Combustion Carbon Dioxide Capture -- 10.5 Low Temperature Carbon Dioxide Capture Strategies -- 10.5.1 Cryogenic Distillation CO2 Capture -- 10.5.2 External Cooling Loop Cryogenic Carbon Dioxide Capture -- 10.5.3 Cryogenic Packed Bed -- 10.5.4 CO2 Cryogenic De-sublimation -- 10.5.5 Stirling Cooler Strategy -- 10.5.6 CryoCell System -- 10.5.7 Controlled Frosting Zone -- 10.6 Hybrid Methods for CO2 Capture -- 10.6.1 Cryogenic-Hydrate Technologies -- 10.6.2 Cryogenic -Membrane Technologies -- 10.6.3 Low Temperature Absorption Technologies -- 10.7 Advantages and Limitations of CO2 Capture Methods Based on Cryogenic Process -- 10.8 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...