GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Meteorological Society  (2)
  • 2020-2024  (2)
  • 1
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 4 ( 2022-04), p. E1117-E1129
    Kurzfassung: As climate change accelerates, societies and climate-sensitive socioeconomic sectors cannot continue to rely on the past as a guide to possible future climate hazards. Operational decadal predictions offer the potential to inform current adaptation and increase resilience by filling the important gap between seasonal forecasts and climate projections. The World Meteorological Organization (WMO) has recognized this and in 2017 established the WMO Lead Centre for Annual to Decadal Climate Predictions (shortened to “Lead Centre” below), which annually provides a large multimodel ensemble of predictions covering the next 5 years. This international collaboration produces a prediction that is more skillful and useful than any single center can achieve. One of the main outputs of the Lead Centre is the Global Annual to Decadal Climate Update (GADCU), a consensus forecast based on these predictions. This update includes maps showing key variables, discussion on forecast skill, and predictions of climate indices such as the global mean near-surface temperature and Atlantic multidecadal variability. it also estimates the probability of the global mean temperature exceeding 1.5°C above preindustrial levels for at least 1 year in the next 5 years, which helps policy-makers understand how closely the world is approaching this goal of the Paris Agreement. This paper, written by the authors of the GADCU, introduces the GADCU, presents its key outputs, and briefly discusses its role in providing vital climate information for society now and in the future.
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2022
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 7 ( 2022-07), p. E1705-E1719
    Kurzfassung: The decadal time scale (∼1–10 years) bridges the gap between seasonal predictions and longer-term climate projections. It is a key planning time scale for users in many sectors as they seek to adapt to our rapidly changing climate. While significant advances in using initialized climate models to make skillful decadal predictions have been made in the last decades, including coordinated international experiments and multimodel forecast exchanges, few user-focused decadal climate services have been developed. Here we highlight the potential of decadal climate services using four case studies from a project led by four institutions that produce real-time decadal climate predictions. Working in co-development with users in agriculture, energy, infrastructure, and insurance sectors, four prototype climate service products were developed. This study describes the challenge of trying to match user needs with the current scientific capability. For example, the use of large ensembles (achieved via a multisystem approach) and skillfully predicted large-scale environmental conditions, are found to improve regional predictions, particularly in midlatitudes. For each climate service, a two-page “product sheet” template was developed that provides users with both a concise probabilistic forecast and information on retrospective performance. We describe the development cycle, where valuable feedback was obtained from a “showcase event” where a wider group of sector users were engaged. We conclude that for society to take full and rapid advantage of useful decadal climate services, easier and more timely access to decadal climate prediction data are required, along with building wider community expertise in their use.
    Materialart: Online-Ressource
    ISSN: 0003-0007 , 1520-0477
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2022
    ZDB Id: 2029396-3
    ZDB Id: 419957-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...