GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (4)
  • 2020-2024  (4)
  • 1
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 13, No. 5 ( 2023-05-04), p. 1100-1115
    Abstract: Immune-checkpoint-inhibitor (ICI)–associated myotoxicity involves the heart (myocarditis) and skeletal muscles (myositis), which frequently occur concurrently and are highly fatal. We report the results of a strategy that included identification of individuals with severe ICI myocarditis by also screening for and managing concomitant respiratory muscle involvement with mechanical ventilation, as well as treatment with the CTLA4 fusion protein abatacept and the JAK inhibitor ruxolitinib. Forty cases with definite ICI myocarditis were included with pathologic confirmation of concomitant myositis in the majority of patients. In the first 10 patients, using recommended guidelines, myotoxicity-related fatality occurred in 60%, consistent with historical controls. In the subsequent 30 cases, we instituted systematic screening for respiratory muscle involvement coupled with active ventilation and treatment using ruxolitinib and abatacept. The abatacept dose was adjusted using CD86 receptor occupancy on circulating monocytes. The myotoxicity-related fatality rate was 3.4% (1/30) in these 30 patients versus 60% in the first quartile (P & lt; 0.0001). These clinical results are hypothesis-generating and need further evaluation. Significance: Early management of respiratory muscle failure using mechanical ventilation and high-dose abatacept with CD86 receptor occupancy monitoring combined with ruxolitinib may be promising to mitigate high fatality rates in severe ICI myocarditis. See related commentary by Dougan, p. 1040. This article is highlighted in the In This Issue feature, p. 1027
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 3239-3239
    Abstract: Background: PD-1 blockade (αPD-1) has shown limited efficacy in breast & gynecologic cancers. In other types of solid tumor, regulatory T cells (Tregs) harbouring markers of highly suppressive effector Tregs (eTregs) correlates with poor responses to PD-1 blockade, prompting combination therapy based on eTregs depletion. Yet, subsets of Tregs remain to be determined in breast & gynecologic cancers, in order to: (i) evaluate the role of eTregs in resistances to PD-1 blockade, (ii) identify the most selective target for eTregs depletion tailored to tumors context and combination strategy. Methods: We collected public single-cell RNA/TCR-sequencing data from primary tumors and metastases of Triple-Negative Breast Cancer patients (TNBC, N = 28) biopsied before and after αPD-1 (pembrolizumab). Microarray data from primary TNBC (N = 124) biopsied before and after αPD-1 were quired for association with clinical responses. Deep phenotyping of Tregs from normal breast tissues (N = 4) and primary breast tumors (N = 8) or gynecologic tumors (N = 17) was performed by mass cytometry. ALD2510 (αCD25NIB, Alderaan Biotechnology) is a novel non-IL-2 blocking Fc-optimized anti-CD25 mAb (1). αPD-1 and αCD25NIB combination was evaluated using: (i) a humanized αCD25NIB in CD34+ humanized NSG mice grafted with human TNBC cell lines, (ii) a murine surrogate of αCD25NIB in a syngeneic TNBC mouse model. Results: CD25high Tregs were accumulating in breast & gynecologic tumor tissues. In TNBC patients treated with αPD-1, fractions of CD25high Tregs were further increased. CD25high Tregs highly expressed eTregs-related molecules in primary tumors, invaded tumor-draining lymph nodes and distant metastases. Amongst the potential therapeutic targets for Treg depletion, only CD25, 4-1BB and CCR8 were largely restricted to intratumoral CD25high eTregs. Yet, CD25 was the best candidate for CD25high eTregs depletion with limited on-target off-Treg effects, as: (i) CCR8 marked a small fractions of CD25high eTregs in primary tumors and was not detected in metastasis, (ii) 4-1BB marked antigen-experienced αβCD8 T cell revigorated by PD-1 blockade, (iii) only CD25high eTregs expressed 4-1BB and CCR8, yet TCR clonotype analysis revealed that CD25high eTregs originate in part from activated CD25+ Tregs, suggesting that anti-CCR8/-4-1BB mAbs may be ineffective due to CD25high eTregs replenishment in tumors. In murine models resistant to αPD-1 alone, αCD25NIB effectively depleted intratumoral CD25high eTregs, with limited effects on peripheral Tregs, and synergized with αPD-1 by restoring a positive effector αβCD8 T cells/Tregs ratio, leading to tumor clearance without adverse effects. Conclusions: This study supports clinical evaluation of CD25high effector Tregs depletion by ALD2510 in patients with breast or gynecologic cancers resistant to PD-1 blockade. Citation Format: Stéphane FATTORI, Aude Le Roy, Jemila Houacine, Lucie Robert, Riad Abes, Laurent Gorvel, Samuel Granjeaud, Marie-Sarah Rouvière, Amira Ben Amara, Nicolas Boucherit, Carole Tarpin, Jihane Pakradouni, Emmanuelle Charafe-Jauffret, Julien Barrou, Gilles Houvenaeghel, Eric Lambaudie, François Bertucci, Philippe Rochigneux, Anthony Gonçalves, Arnaud Foussat, Anne-Sophie Chrétien, Daniel Olive. Selective depletion of regulatory T cells by ALD2510, a novel IL-2-sparing anti-CD25 antibody, synergizes with PD-1 blockade in breast and gynecologic cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3239.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 18 ( 2023-09-15), p. 3026-3044
    Abstract: Regulatory T cells (Treg) impede effective antitumor immunity. However, the role of Tregs in the clinical outcomes of patients with triple-negative breast cancer (TNBC) remains controversial. Here, we found that an immunosuppressive TNBC microenvironment is marked by an imbalance between effector αβCD8+ T cells and Tregs harboring hallmarks of highly suppressive effector Tregs (eTreg). Intratumoral eTregs strongly expressed PD-1 and persisted in patients with TNBC resistant to PD-1 blockade. Importantly, CD25 was the most selective surface marker of eTregs in primary TNBC and metastases compared with other candidate targets for eTreg depletion currently being evaluated in trials for patients with advanced TNBC. In a syngeneic TNBC model, the use of Fc-optimized, IL2 sparing, anti-CD25 antibodies synergized with PD-1 blockade to promote systemic antitumor immunity and durable tumor growth control by increasing effector αβCD8+ T-cell/Treg ratios in tumors and in the periphery. Together, this study provides the rationale for the clinical translation of anti-CD25 therapy to improve PD-1 blockade responses in patients with TNBC. Significance: An imbalance between effector CD8+ T cells and CD25high effector Tregs marks immunosuppressive microenvironments in αPD-1–resistant TNBC and can be reversed through effector Treg depletion to increase αPD-1 efficacy.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 12, No. 6 ( 2022-06-02), p. 1435-1448
    Abstract: Missense mutations in the polymerase epsilon (POLE) gene have been reported to generate proofreading defects resulting in an ultramutated genome and to sensitize tumors to checkpoint blockade immunotherapy. However, many POLE-mutated tumors do not respond to such treatment. To better understand the link between POLE mutation variants and response to immunotherapy, we prospectively assessed the efficacy of nivolumab in a multicenter clinical trial in patients bearing advanced mismatch repair–proficient POLE-mutated solid tumors. We found that only tumors harboring selective POLE pathogenic mutations in the DNA binding or catalytic site of the exonuclease domain presented high mutational burden with a specific single-base substitution signature, high T-cell infiltrates, and a high response rate to anti–PD-1 monotherapy. This study illustrates how specific DNA repair defects sensitize to immunotherapy. POLE proofreading deficiency represents a novel agnostic biomarker for response to PD-1 checkpoint blockade therapy. Significance: POLE proofreading deficiency leads to high tumor mutational burden with high tumor-infiltrating lymphocytes and predicts anti–PD-1 efficacy in mismatch repair–proficient tumors. Conversely, tumors harboring POLE mutations not affecting proofreading derived no benefit from PD-1 blockade. POLE proofreading deficiency is a new tissue-agnostic biomarker for cancer immunotherapy. See related video: https://vimeo.com/720727355 This article is highlighted in the In This Issue feature, p. 1397
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...