GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (2)
  • 2020-2024  (2)
  • 1
    Publication Date: 2024-02-07
    Description: Communities and their functioning are jointly shaped by ecological and evolutionary processes that manifest in diversity shifts of their component species and genotypes. How both processes contribute to community functional change over time is rarely studied. We here repeatedly quantified eco-evolutionary contributions to CO2-driven total abundance and mean cell size changes after short-, mid-, and longer-term (80, 168, and 〉 168 d, respectively) in experimental phytoplankton communities. While the CO2-driven changes in total abundance and mean size in the short- and mid-term could be predominantly attributed to ecological shifts, the relative contribution of evolution increased. Over the longer-term, the CO2-effect and underlying eco-evolutionary changes disappeared, while total abundance increased, and mean size decreased significantly independently of CO2. The latter could be presumably attributed to CO2-independent genotype selection which fed back to species composition. In conclusion, ecological changes largely dominated the regulation of environmentally driven phytoplankton functional shifts at first. However, evolutionary changes gained importance with time, and can ultimately feedback on species composition, and thus must be considered when predicting phytoplankton change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography) | Wiley
    Publication Date: 2024-04-26
    Description: The simulation of deep-sea conditions in laboratories is technically challenging but necessary for experiments that aim at a deeper understanding of physiological mechanisms or host-symbiont interactions of deep-sea organisms. In a proof-of-concept study, we designed a recirculating system for long-term culture (〉2 yr) of deep-sea mussels Gigantidas childressi (previously Bathymodiolus childressi). Mussels were automatically (and safely) supplied with a maximum stable level of ~60 μmol L−1 methane in seawater using a novel methane–air mixing system. Experimental animals also received daily doses of live microalgae. Condition indices of cultured G. childressi remained high over the years, and low shell growth rates could be detected, too, which is indicative of positive energy budgets. Using stable isotope data, we demonstrate that G. childressi in our culture system gained energy, both, from the digestion of methane-oxidizing endosymbionts and from digesting particulate food (microalgae). Limitations of the system, as well as opportunities for future experimental approaches involving deep-sea mussels, are discussed.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...