GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (612)
  • 2020-2024  (612)
Material
Publisher
  • AIP Publishing  (612)
Language
Years
  • 2020-2024  (612)
Year
Subjects(RVK)
  • 1
    In: Applied Physics Letters, AIP Publishing, Vol. 120, No. 5 ( 2022-01-31)
    Abstract: We report a robust, compact, and transportable optical clock (TOC-729-2) based on a trapped single 40Ca+ ion with a systematic uncertainty of 1.1×10−17, which is limited by the black-body radiation shift uncertainty at room temperature. By comparing it with the previous transportable optical clock (TOC-729-1) similar but completely independent, the instability was measured to be better than 1.2×10−14/τ. Benefiting from the modular and integrated design, this TOC was constructed in a volume of ∼0.33 m3 excluding the controlling electronics in 19-in. racks. After being moved ∼1200 km away by express delivery, the single-ion signal was restored within 24 h. With the TOC uptime of 92% in 35-day period, the absolute frequency of the 729 nm transition of 40Ca+ was measured using a satellite link to International Atomic Time (TAI) to provide traceability to the SI second, and the result is 411 042 129 776 400.15(22) Hz, corresponding to a relative uncertainty of 5.3×10−16.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2020
    In:  Chinese Journal of Chemical Physics Vol. 33, No. 6 ( 2020-12-01), p. 769-774
    In: Chinese Journal of Chemical Physics, AIP Publishing, Vol. 33, No. 6 ( 2020-12-01), p. 769-774
    Abstract: Silicon bulk etching is an important part of micro-electro-mechanical system (MEMS) technology. In this work, a novel etching method is proposed based on the vapor from tetramethy-lammonium hydroxide (TMAH) solution heated up to boiling point. The monocrystalline silicon wafer is positioned over the solution surface and can be anisotropically etched by the produced vapor. This etching method does not rely on the expensive vacuum equipment used in dry etching. Meanwhile, it presents several advantages like low roughness, high etching rate and high uniformity compared with the conventional wet etching methods. The etching rate and roughness can reach 2.13 µm/min and 1.02 nm, respectively. Furthermore, the diaphragm structure and Al-based pattern on the non-etched side of wafer can maintain intact without any damage during the back-cavity fabrication. Finally, an etching mechanism has been proposed to illustrate the observed experimental phenomenon. It is suggested that there is a water thin film on the etched surface during the solution evaporation. It is in this water layer that the ionization and etching reaction of TMAH proceed, facilitating the desorption of hydrogen bubble and the enhancement of molecular exchange rate. This new etching method is of great significance in the low-cost and high-quality micro-electromechanical system industrial fabrication.
    Type of Medium: Online Resource
    ISSN: 1674-0068 , 2327-2244
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2381472-X
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Chinese Journal of Chemical Physics Vol. 35, No. 2 ( 2022-04-01), p. 257-262
    In: Chinese Journal of Chemical Physics, AIP Publishing, Vol. 35, No. 2 ( 2022-04-01), p. 257-262
    Abstract: In this work, we used time-sliced ion velocity imaging to study the photodissociation dynamics of MgO at 193 nm. Three dissociation pathways are found through the speed and angular distributions of magnesium. One pathway is the one-photon excitation of MgO(X1Σ+) to MgO(G1Π) followed by spin-orbit coupling between the G1Π, 33Π and 15Π states, and finally dissociated to the Mg(3Pu)+O(3Pg) along the 15Π surface. The other two pathways are one-photon absorption of MgO(A1Π) state to MgO(G1Π) and MgO(41Π) state to dissociate into Mg(3Pu)+O(3Pg) and Mg(1Sg)+O(1Sg), respectively. The anisotropy parameters of the dissociation pathways are related to the lifetime of the vibrational energy levels and the coupling of rotational and vibronic spin-orbit states. The total kinetic energy analysis gives D0(Mg−O)=21645±50 cm−1.
    Type of Medium: Online Resource
    ISSN: 1674-0068 , 2327-2244
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 2381472-X
    SSG: 6,25
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: APL Materials, AIP Publishing, Vol. 8, No. 7 ( 2020-07-01)
    Abstract: Cs4PbBr6 crystals have been synthesized by an ultrasonication-assisted trace amount polar solvent method. The prepared green Cs4PbBr6 material was found to have high photoluminescence (PL) brightness and 10 ns PL lifetime. The prepared green light emitting device can achieve the maximum brightness of 3.8 × 109 cd/m2, which is nearly 100 times higher than a wick. The white light emitting device based on Cs4PbBr6 crystals has better performance than commercial products, which can cover 32.3% of the color gamut and achieves 107.3% coverage for International Commission on Illumination (CIE)1931 and 84.8% coverage for CIE1976.
    Type of Medium: Online Resource
    ISSN: 2166-532X
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2722985-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Applied Physics, AIP Publishing, Vol. 131, No. 2 ( 2022-01-14)
    Abstract: Two-dimensional materials have been extensively investigated for fabricating high-performance visible optoelectronic devices. Considering the significance of mid-infrared band, narrow-band two-dimensional semiconductor materials have become the key point. In this work, we bring out two kinds of monolayer lateral heterostructures (LHSs) based on arsenic (As)/antimony (Sb) to realize the narrow band structure. The bandgap of LHS with an armchair interface is calculated to be 1.1 eV with an indirect band through the first principle, and the bandgap of LHS with a zigzag interface is 0.57 eV with a direct band. Their bandgaps are all shrunk by applying tensile or compressive strains. Furthermore, indirect-to-direct transitions appear in the armchair LHS when tensile strains are applied. Partial density-of-states and charge density distributions indicate that electron transmission from Sb atoms to As atoms may be the main factor for the reduction of the bandgap. In addition, the tensile strain extends the optical absorption to the infrared region. The As/Sb lateral heterostructures proposed in this paper are of great significance for infrared optoelectronic devices.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Applied Physics, AIP Publishing, Vol. 128, No. 23 ( 2020-12-21)
    Abstract: The generation of p-type GaN through ion implantation is an attractive proposition in the massive production of GaN-based bipolar devices, whereas the removal of implantation induced lattice disturbances and defects is a difficult exercise and hampers the conversion of conductivity in GaN. Pulsed laser annealing is an effective annealing technique to recover lattice crystallinity and activate dopants with the preserved implanted profile. In this work, the effect of pulsed laser annealing on structural and optical recovery in high-dose magnesium (Mg) ion-implanted GaN has been investigated. The structural evolution and vibrational dynamics indicate an obvious structural recovery and partial strain release of Mg-implanted GaN during the pulsed laser annealing process, with a threshold laser fluence of 400 mJ/cm2, while rough surface structures are a result of the regrowth mechanism similar to liquid phase epitaxy. The enhanced donor–acceptor transition at 3.35 eV after pulsed laser irradiation is a sign of the effective activation of Mg from interstitial sites into the substitution of Ga ions. These results suggest that further optimization of the laser annealing technique has promising potential to manipulate the p-type conductivity of Mg-implanted GaN and to be implemented in GaN bipolar devices for practical applications.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Review of Scientific Instruments, AIP Publishing, Vol. 92, No. 5 ( 2021-05-01)
    Abstract: A transportable fountain clock with high reliability is important for high-precision time-frequency measurements. Because of its relatively small cold atoms’ collision frequency shift and ease of attaining high quantum state preparation efficiency, the rubidium atomic fountain clock has an indicated higher stability and reliability. This paper reports the design and operation of a transportable rubidium atomic fountain clock developed by the Shanghai Institute of Optical and Fine Mechanics, Chinese Academy of Science. After being transported more than 1000 km from Shanghai to the Changping Campus of the National Institute of Metrology, China, the optical platform and other hardware of the fountain clock did not need to be adjusted. The rubidium fountain clock maintained a stability of 4.0 × 10−13τ1/2, reaching 5.0 × 10−16 at 300 000 s. After transportation, the rubidium fountain clock and a cesium fountain clock (NIM5) were operated together against the reference frequency of a hydrogen maser. In three separate operating periods, over a total of nearly three months, the average frequency repeatability of the rubidium fountain was less than 3.8 × 10−15.
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Physics of Fluids, AIP Publishing, Vol. 32, No. 9 ( 2020-09-01)
    Abstract: Impact dynamics of nanodroplets has recently gained extensive attention because of its potential applications in nanoscale inkjet printing, nanodroplet spray cooling, and nanocoating. In this study, a nanodroplet impacting unheated, flat, smooth, and hydrophobic surfaces is investigated via molecular dynamics simulations. The emphasis is placed on spreading and retraction kinetics, i.e., time-dependent wetting radius or r–τ relation, where r and τ are the normalized wetting radius and time. On the basis of an energy conservation approach, an analytical model of r–τ kinetics is developed for impacting nanodroplets. Hypotheses of cylinder droplet and extensional flow are employed to calculate the transient kinetic energy and viscous dissipation rate, which are found to be the most appropriate for impacting nanodroplets. The model is tested in a range of Weber numbers from We = 15 to 60, Reynolds numbers from Re = 11.07 to 22.19, and surface wettability θ0 = 105° and 125°. The tests show that the mean relative deviation ranges from 2.22% to 5.47%, and hence, the developed model captures the spreading and retraction kinetics of a nanodroplet impacting hydrophobic surfaces with satisfactory accuracy. Furthermore, it is found that the model can also be extended to predict the retraction kinetics of nanodroplets on hydrophilic surfaces for high Weber numbers.
    Type of Medium: Online Resource
    ISSN: 1070-6631 , 1089-7666
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 1472743-2
    detail.hit.zdb_id: 241528-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Applied Physics Letters, AIP Publishing, Vol. 121, No. 16 ( 2022-10-17)
    Abstract: Lithium dendrite (filaments) propagation in solid electrolytes (SEs) leading to short circuits is one of the biggest obstacles to the application of all-solid-state lithium metal batteries. Due to the lack of operando techniques that can provide high resolution, the insufficient knowledge of the lithium dendrite growth inside SEs makes it difficult to suppress the dendrite growth. To reveal the mechanism of the Li filament growth in SEs, we achieved real-time monitoring of the nanoscale Li filament growth by operando small-angle neutron scattering (SANS) in representative Li6.5La3Zr1.5Nb0.5O12 SEs. On continuous plating, the Li filament growth is not simply an accumulation of Li, but there is a dynamic evolution due to the competition between the Li filament growth and self-healing. With the aid of simulations and experiments, this dynamic competition was demonstrated to be highly dependent on temperature variation. The enhanced self-healing ability of Li at elevated temperatures plays a positive role in suppressing the Li filament growth. The heat therapy improved the cell's cycle life, which provided insight into suppressing the Li filament growth. Operando SANS with high Li sensitivity provides a platform for investigating Li filaments in SEs.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Journal of Chemical Physics, AIP Publishing, Vol. 153, No. 12 ( 2020-09-28)
    Abstract: In this study, we provide fundamental understanding on defect properties of the Sb2(S,Se)3 absorber film and the impact on transmission of photo-excited carriers in N–i–P architecture solar cells by both deep level transient spectroscopy (DLTS) and optical deep level transient spectroscopy (ODLTS) characterizations. Through conductance–voltage and temperature-dependent current–voltage characterization under a dark condition, we find that the Sb2(S,Se)3 solar cell demonstrates good rectification and high temperature tolerance. The DLTS results indicates that there are two types of deep level hole traps H1 and H2 with active energy of 0.52 eV and 0.76 eV in the Sb2(S,Se)3 film, and this defect property is further verified by ODLTS. The two traps hinder the transmission of minority carrier (hole) and pinning the Fermi level, which plays a negative role in the improvement of open-circuit voltage for Sb2(S,Se)3 solar cells. This research suggests a critical direction toward the efficiency improvement of Sb2(S,Se)3 solar cells.
    Type of Medium: Online Resource
    ISSN: 0021-9606 , 1089-7690
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 3113-6
    detail.hit.zdb_id: 1473050-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...