GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (5)
  • 2020-2024  (5)
Material
Publisher
  • AIP Publishing  (5)
Language
Years
  • 2020-2024  (5)
Year
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Journal of Applied Physics Vol. 132, No. 8 ( 2022-08-28)
    In: Journal of Applied Physics, AIP Publishing, Vol. 132, No. 8 ( 2022-08-28)
    Abstract: Impedance matching can maximize the absorbed power transferred to the plasma load and minimize the reflected power, making it critical and indispensable for capacitively coupled plasmas (CCPs). The external circuit usually interacts with the plasma nonlinearly, so the global simulation of the external circuit and plasma and the matching design is very challenging. In this work, an a priori model was proposed to match the plasma impedance and the external circuit impedance for single-frequency CCPs. By calculating the plasma impedance and the matching network, the matching parameters were iteratively updated to find the best matching parameters. By adjusting the capacitance and the inductance of the circuit by numerical simulations, the reflection coefficient can be significantly reduced. At the same time, the plasma power absorption efficiency will be significantly improved. The universality of the method was demonstrated by choosing different initial circuit, discharge, and plasma parameters. The proposed method provides an effective matching design reference for CCPs.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Chaos: An Interdisciplinary Journal of Nonlinear Science Vol. 32, No. 7 ( 2022-07-01)
    In: Chaos: An Interdisciplinary Journal of Nonlinear Science, AIP Publishing, Vol. 32, No. 7 ( 2022-07-01)
    Abstract: In this study, we examine the impact of information-driven awareness on the spread of an epidemic from the perspective of resource allocation by comprehensively considering a series of realistic scenarios. A coupled awareness-resource-epidemic model on top of multiplex networks is proposed, and a Microscopic Markov Chain Approach is adopted to study the complex interplay among the processes. Through theoretical analysis, the infection density of the epidemic is predicted precisely, and an approximate epidemic threshold is derived. Combining both numerical calculations and extensive Monte Carlo simulations, the following conclusions are obtained. First, during a pandemic, the more active the resource support between individuals, the more effectively the disease can be controlled; that is, there is a smaller infection density and a larger epidemic threshold. Second, the disease can be better suppressed when individuals with small degrees are preferentially protected. In addition, there is a critical parameter of contact preference at which the effectiveness of disease control is the worst. Third, the inter-layer degree correlation has a “double-edged sword” effect on spreading dynamics. In other words, when there is a relatively lower infection rate, the epidemic threshold can be raised by increasing the positive correlation. By contrast, the infection density can be reduced by increasing the negative correlation. Finally, the infection density decreases when raising the relative weight of the global information, which indicates that global information about the epidemic state is more efficient for disease control than local information.
    Type of Medium: Online Resource
    ISSN: 1054-1500 , 1089-7682
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 1472677-4
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Applied Physics, AIP Publishing, Vol. 131, No. 20 ( 2022-05-28)
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Physics of Plasmas, AIP Publishing, Vol. 29, No. 11 ( 2022-11-01)
    Abstract: Radiofrequency (RF) coaxial cables are one of the vital components for the power sources of capacitively coupled plasmas (CCPs), by which the RF power is transferred to excite the plasma. Usually, the cables can be treated as transmission lines (TLs). However, few studies of TLs in CCP power sources were conducted due to the nonlinear coupling between TLs and the plasma. In this work, we developed a numerical scheme of TLs based on the Lax–Wendroff method and realized the nonlinear bidirectional coupling among the lumped-element model, transmission line model, and electrostatic particle-in-cell model. Based on the combined model, three discharge patterns were found, including weak matching state, normal state, and over matching state. The great differences among the three patterns indicated that the TLs could change the impedance matching of the device and significantly affect the plasma properties.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    AIP Publishing ; 2022
    In:  Journal of Applied Physics Vol. 131, No. 15 ( 2022-04-21)
    In: Journal of Applied Physics, AIP Publishing, Vol. 131, No. 15 ( 2022-04-21)
    Abstract: The breakdown process of capacitively coupled plasma (CCP) in the presence of a matching network is rarely studied, even though it is the indispensable part of the most laboratory and industrial devices of CCP. Based on the method of Verboncoeur, the solution method of the general “L”-type match circuit coupled with a particle-in-cell/Monte Carlo code is deduced self-consistently. Based on this method, the electrical breakdown process of CCP is studied. Both the plasma parameters and the electric parameters of the matching network during the breakdown are given and analyzed. In the pre-breakdown phase, the entire circuit can be considered as a linear system. However, the formation of the sheath during breakdown significantly enhanced the capacitance of the discharge chamber, which changed the electric signal amplitude of the external circuit. With the stabilization of plasma, the equivalent capacitance of CCP increases, which continues to change the electrical signal until the steady-state is reached. Accompanied by plasma stabilization is the appearance of high-order harmonics of discharge current caused by the gradually oscillating CCP capacitance. The breakdown characteristics can be obviously affected by the capacitance of the matching network. In the case of a breakdown zone, some breakdowns with special characteristics can be obtained by choosing the different capacitors. These works might be a reference for understanding the interaction between the plasma and the external circuit during the breakdown process and how to modulate the gas breakdown by controlling the external circuit.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...