GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (1)
  • 1990-1994  (2)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 360 (1992), S. 658-660 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The occurrence of higher-than-present lake levels in Artemisia -dominated steppe during the millenia around the Last Glacial Maximum (~18kyr BP) is a feature of palaeoenviron-mental records in the northern Mediterranean region from Spain to Iran1'11. At Lake loannina (39°40'-N, 20° 53' E, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 8 (1993), S. 189-200 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Sensitivity experiments with a simple water-balance model were used to constrain the possible climatic causes of distinct Holocene patterns of lake-level variation in different regions of Europe. Lakes in S Sweden were low at 9 ka, high around 6.5 ka, low again around 4 ka and are high now. Lakes in Estonia show similar but weaker trends. Lakes in S France were highest around 9 ka, lowest around 4 ka, intermediate now. Lakes in Greece were also high around 9 ka but continued rising until 7.5 ka, then fell gradually from 5 ka with a brief high phase around 3 ka, and are low now. The model was forced with insolation anomalies deduced from orbital variations, temperature anomalies inferred from the pollen record and cloudiness anomalies derived from changes in the position of the subtropical anticyclone (inferred from reconstructed changes in the equator-to-pole temperature gradient), in order to evaluate the effects of resultant evaporation changes on catchment water balance. The resulting simulated changes in runoff (precipitation minus actual evapotranspiration) were slight, and frequently opposite to the observed trends. Larger changes in precipitation are plausible and are required to explain the data. The required precipitation increase in N Europe from 9 ka (low) to 6 ka (high) is suggested by GCM experiments to have been a consequence of interacting insolation and residual ice-sheet effects on the atmospheric circulation over the North Atlantic. The explanation of other observed changes, including the drying trend during the Holocene in S Europe, has not been provided by GCM experiments to date. Explanations may lie in changes in mesoscale circulation, sea-surface temperature patterns and the coupling between these phenomena that may not follow orbital changes in any simple way.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: The Last Glacial Maximum (LGM, ∼ 21 000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models has been used to generate LGM simulations as part of the Paleoclimate Modelling Intercomparison Project (PMIP) contribution to the Coupled Model Intercomparison Project (CMIP). Here, we provide a preliminary analysis and evaluation of the results of these LGM experiments (PMIP4, most of which are PMIP4-CMIP6) and compare them with the previous generation of simulations (PMIP3, most of which are PMIP3-CMIP5). We show that the global averages of the PMIP4 simulations span a larger range in terms of mean annual surface air temperature and mean annual precipitation compared to the PMIP3-CMIP5 simulations, with some PMIP4 simulations reaching a globally colder and drier state. However, the multi-model global cooling average is similar for the PMIP4 and PMIP3 ensembles, while the multi-model PMIP4 mean annual precipitation average is drier than the PMIP3 one. There are important differences in both atmospheric and oceanic circulations between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large. Therefore, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land–sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the paleoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. These results point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...