GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (34)
  • OceanRep  (5)
  • 2020-2024  (39)
  • 1990-1994
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: Highlights • Fe-binding ligands associated with primary productivity together with ligands from the Arctic Ocean are the main sources of Fe-binding ligands in surface waters of Fram Strait. • Fe-binding ligands are present in a high concentrations in front of the glacier terminus, but the ligands have a relatively low binding capacity, thus less reactive. • Low binding strength coupled with low competing strength of ligands result in a higher inorganic Fe concentration, causing Fe to precipitate or scavenged. Abstract There is a paucity of data on Fe-binding ligands in the Arctic Ocean. Here we investigate the distribution and chemical properties of natural Fe-binding ligands in Fram Strait and over the northeast Greenland shelf, shedding light on their potential sources and transport. Our results indicate that the main sources of organic ligands to surface waters of Fram Strait included primary productivity and supply from the Arctic Ocean. We calculated the mean total Fe-binding ligand concentration, [Lt], in Polar Surface Water from the western Fram Strait to be 1.65 ± 0.4 nM eq. Fe. This value is in between reported values for the Arctic and North Atlantic Oceans, confirming reports of north to south decreases in [Lt] from the Arctic Ocean. The differences between ligand sources in different biogeochemical provinces, resulted in distinctive ligand properties and distributions that are reflected in [Lt], binding strength (log KFe'L′) and competing strength (log αFe'L) of ligands. Higher [Lt] was present near the Nioghalvfjerdsfjorden (79 N) Glacier terminus and in the Westwind Trough (median of [Lt] = 2.17 nM eq. Fe; log KFe'L′ = 12.3; log αFe'L = 3.4) than in the Norske Trough (median of [Lt] = 1.89 nM eq. Fe; log KFe'L′= 12.8; log αFe'L = 3.8) and in Fram Strait (median of [Lt] = 1.38 nM eq. Fe; log KFe'L′ = 13; log αFe'L= 3.9). However, organic ligands near the 79 N Glacier terminus and in the Westwind Trough were weaker, and therefore less reactive than organic ligands in the Norske Trough and in Fram Strait. Our findings reveal the fundamental mechanism that underpin transport of dissolved-Fe (DFe) from the 79 N Glacier to Fram Strait, less reactive ligands will reduce Fe solubility. Accordingly, a portion of the glacial DFe will not be transported over the shelf into the ocean. The lower ligand binding strength in the outflow results in a higher inorganic Fe concentration, [Fe´], which is more prone to precipitation and/or scavenging than Fe complexed with stronger ligands. Ongoing changes in the Arctic and sub-Arctic Oceans will influence both terrestrially derived and in-situ produced Fe-binding ligands, and therefore will have consequences for Fe solubility and availability to microbial populations and Fe cycling in Fram Strait.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Deep-seabed polymetallic nodule mining can have multiple adverse effects on benthic communities, such as permanent loss of habitat by removal of nodules and habitat modification of sediments. One tool to manage biodiversity risks is the mitigation hierarchy, including avoidance, minimization of impacts, rehabilitation and/or restoration, and offset. We initiated long-term restoration experiments at sites in polymetallic nodule exploration contract areas in the Clarion-Clipperton Zone that were (i) cleared of nodules by a preprototype mining vehicle, (ii) disturbed by dredge or sledge, (iii) undisturbed, and (iv) naturally devoid of nodules. To accommodate for habitat loss, we deployed 〉2000 artificial ceramic nodules to study the possible effect of substrate provision on the recovery of biota and its impact on sediment biogeochemistry. Seventy-five nodules were recovered after eight weeks and had not been colonized by any sessile epifauna. All other nodules will remain on the seafloor for several years before recovery. Furthermore, to account for habitat modification of the top sediment layer, sediment in an epibenthic sledge track was loosened by a metal rake to test the feasibility of sediment decompaction to facilitate soft-sediment recovery. Analyses of granulometry and nutrients one month after sediment decompaction revealed that sand fractions are proportionally lower within the decompacted samples, whereas total organic carbon values are higher. Considering the slow natural recovery rates of deep-sea communities, these experiments represent the beginning of a ~30-year study during which we expect to gain insights into the nature and timing of the development of hard-substrate communities and the influence of nodules on the recovery of disturbed sediment communities. Results will help us understand adverse long-term effects of nodule removal, providing an evidence base for setting criteria for the definition of “serious harm” to the environment. Furthermore, accompanying research is needed to define a robust ecosystem baseline in order to effectively identify restoration success.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Competitive ligand exchange – adsorptive cathodic stripping voltammetry (CLE-AdCSV) is a widely used technique to determine dissolved iron (Fe) speciation in seawater, and involves competition for Fe of a known added ligand (AL) with natural organic ligands. Three different ALs were used, 2-(2-thiazolylazo)-p-cresol (TAC), salicylaldoxime (SA) and 1-nitroso-2-napthol (NN). The total ligand concentrations ([L t ]) and conditional stability constants (log K ′ Fe’L ) obtained using the different ALs are compared. The comparison was done on seawater samples from Fram Strait and northeast Greenland shelf region, including the Norske Trough, Nioghalvfjerdsfjorden (79N) Glacier front and Westwind Trough. Data interpretation using a one-ligand model resulted in [L t ] SA (2.72 ± 0.99 nM eq Fe) > [L t ] TAC (1.77 ± 0.57 nM eq Fe) > [L t ] NN (1.57 ± 0.58 nM eq Fe); with the mean of log K ′ Fe’L being the highest for TAC (log ′ K Fe’L(TAC) = 12.8 ± 0.5), followed by SA (log K ′ Fe’L(SA) = 10.9 ± 0.4) and NN (log K ′ Fe’L(NN) = 10.1 ± 0.6). These differences are only partly explained by the detection windows employed, and are probably due to uncertainties propagated from the calibration and the heterogeneity of the natural organic ligands. An almost constant ratio of [L t ] TAC /[L t ] SA = 0.5 – 0.6 was obtained in samples over the shelf, potentially related to contributions of humic acid-type ligands. In contrast, in Fram Strait [L t ] TAC /[L t ] SA varied considerably from 0.6 to 1, indicating the influence of other ligand types, which seemed to be detected to a different extent by the TAC and SA methods. Our results show that even though the SA, TAC and NN methods have different detection windows, the results of the one ligand model captured a similar trend in [L t ], increasing from Fram Strait to the Norske Trough to the Westwind Trough. Application of a two-ligand model confirms a previous suggestion that in Polar Surface Water and in water masses over the shelf, two ligand groups existed, a relatively strong and relatively weak ligand group. The relatively weak ligand group contributed less to the total complexation capacity, hence it could only keep part of Fe released from the 79N Glacier in the dissolved phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The abyssal seafloor in the Clarion-Clipperton Zone (CCZ) in the NE Pacific hosts the largest abundance of polymetallic nodules in the deep sea and is being targeted as an area for potential deep-sea mining. During nodule mining, seafloor sediment will be brought into suspension by mining equipment, resulting in the formation of sediment plumes, which will affect benthic and pelagic life not naturally adapted to any major sediment transport and deposition events. To improve our understanding of sediment plume dispersion and to support the development of plume dispersion models in this specific deep-sea area, we conducted a small-scale, 12-hour disturbance experiment in the German exploration contract area in the CCZ using a chain dredge. Sediment plume dispersion and deposition was monitored using an array of optical and acoustic turbidity sensors and current meters placed on platforms on the seafloor, and by visual inspection of the seafloor before and after dredge deployment. We found that seafloor imagery could be used to qualitatively visualise the redeposited sediment up to a distance of 100 m from the source, and that sensors recording optical and acoustic backscatter are sensitive and adequate tools to monitor the horizontal and vertical dispersion of the generated sediment plume. Optical backscatter signals could be converted into absolute mass concentration of suspended sediment to provide quantitative data on sediment dispersion. Vertical profiles of acoustic backscatter recorded by current profilers provided qualitative insight into the vertical extent of the sediment plume. Our monitoring setup proved to be very useful for the monitoring of this small-scale experiment and can be seen as an exemplary strategy for monitoring studies of future, upscaled mining trials. We recommend that such larger trials include the use of AUVs for repeated seafloor imaging and water column plume mapping (optical and acoustical), as well as the use of in-situ particle size sensors and/or particle cameras to better constrain the effect of suspended particle aggregation on optical and acoustic backscatter signals.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: A new matrix-matched reference material has been developed – NFHS-2-NP (NIOZ Foraminifera House Standard-2-Nano-Pellet) – with element mass fractions, and isotope ratios resembling that of natural foraminiferal calcium carbonate. A 180–355 µm size fraction of planktic foraminifera was milled to nano-particles and pressed to pellets. We report reference and information values for mass fractions of forty-six elements measured by six laboratories as well as for 87Sr/86Sr (three laboratories), δ13C, δ18O (five laboratories), and 206,207,208Pb/204Pb isotope ratios (one laboratory) determined by ICP-MS, ICP-OES, MC-ICP-MS, IRMS, WD-XRF and TIMS. Inter- and intra-pellet elemental homogeneity was tested using multiple LA-ICP-MS analyses in two laboratories applying spot sizes of 60 and 70 µm. The LA-ICP-MS results for most of the elements relevant as proxies for palaeoclimate research show RSD values 〈 3%, demonstrating a satisfactory homogeneous composition. Homogeneity of 87Sr/86Sr ratios of the pellet was verified by repeated LA-MC-ICP-MS by two laboratories. Information values are reported for Pb isotope ratios and δ13C, δ18O values. The homogeneity for these isotope systems remains to be tested by LA-MC-ICP-MS and SIMS. Overall, our results confirm the suitability of NFHS-2-NP for calibration or monitoring the quality of in situ geochemical techniques.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-05
    Description: This dataset includes ages, long-chain diol index (LDI), and estimated sea surface temperature (SST) based on calibration de Bar et al., 2020. Sediment cores; NIOP905, SO47-74KL, PASOM3, and SO130-289KL, were obtained from the north and the western Arabian Sea, covering the last 25 kyr and 35 kyr respectively.
    Keywords: Biomarker; Deglaciation; paleotemperature proxy; SST; Upwelling
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-19
    Description: Sediment cores were collected using a piston corer at three sites in the eastern Mediterranean Sea. Piston cores MS21 (32°20.7'N, 31°39.0'E; 1022 m water depth; 751.5 cm in length) and MS66 (33°1.9'N, 31°47.9'E; 1630 m water depth; 630 cm in length) were recovered during the MIMES cruise with the R/V Pelagia in 2004. Piston core 64PE406E1 (33°18.1'N, 33°23.7'E; 1760 m water depth; 920.5 cm in length) was recovered during the Eastern Mediterranean part of the 64PE406 (NESSC) cruise with the R/V Pelagia in 2016. The cores were opened and then prepared for X-Ray Fluorescence (XRF) core scanning by carefully flattening the sediment and covering it with a 4-μm SPEXCerti Ultralene foil. Subsequently, the sediments were XRF-scanned with a 1-mm resolution using four settings (10 kV-no filter, 20 kV-Al filter, 30 kV-Pd-thick filter, and 50 kV-Cu filter). The produced XRF-core-scanner data were calibrated using a subset of the discrete samples taken from the same core material. These samples were digested with an acid mixture and partially measured by inductively coupled plasma mass spectrometry (ICP-MS) and partially measured by ICP-optical emission spectroscopy (ICP-OES). The main purpose of our data collection was to reconstruct in detail (~10-50 yr resolution) the deoxygenation and anoxia in the eastern Mediterranean Sea during the last 300 ka BP; we focused on elements and elemental ratios of Al, Ba, Mo, Ti, and U.
    Keywords: 64PE406; 64PE406-E1; Geochemical scanning of climate change analogues to assess future hypoxia in restricted basins; Geochemistry; Mediterranean Sea; MIMES; MIMES_43; MIMES_96; MS21PC; MS66PC; NESSC EAST MED; Nile Fan; Osiris & Amon Mud Volcano; PC; Pelagia; Piston corer; sapropels; SCANALOGUE; trace elements; XRF-scanning
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-19
    Keywords: 64PE406; 64PE406-E1; AGE; Aluminium; Barium; DEPTH, sediment/rock; Geochemical scanning of climate change analogues to assess future hypoxia in restricted basins; Geochemistry; Inductively coupled plasma - mass spectrometry (ICP-MS); Mediterranean Sea; Molybdenum; NESSC EAST MED; PC; Pelagia; Piston corer; sapropels; SCANALOGUE; Titanium; trace elements; Uranium; XRF-scanning
    Type: Dataset
    Format: text/tab-separated-values, 185 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-19
    Keywords: AGE; Aluminium; Barium; DEPTH, sediment/rock; Geochemical scanning of climate change analogues to assess future hypoxia in restricted basins; Geochemistry; Inductively coupled plasma - mass spectrometry (ICP-MS); Mediterranean Sea; MIMES; MIMES_43; Molybdenum; MS21PC; Osiris & Amon Mud Volcano; PC; Pelagia; Piston corer; sapropels; SCANALOGUE; Titanium; trace elements; Uranium; XRF-scanning
    Type: Dataset
    Format: text/tab-separated-values, 540 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-19
    Keywords: AGE; Aluminium; Barium; DEPTH, sediment/rock; Geochemical scanning of climate change analogues to assess future hypoxia in restricted basins; Geochemistry; Mediterranean Sea; MIMES; MIMES_96; Molybdenum; MS66PC; Nile Fan; PC; Pelagia; Piston corer; sapropels; SCANALOGUE; Titanium; trace elements; Uranium; X-ray fluorescence (XRF); XRF-scanning
    Type: Dataset
    Format: text/tab-separated-values, 27445 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...